
SDL mixer
13 November 2009

Jonathan Atkins

Copyright c© 2009 Jonathan Atkins
Permission is granted to distribute freely, or in a distribution of any kind. All distributions
of this file must be in an unaltered state, except for corrections.
The latest copy of this document can be found at http://www.jonatkins.org/SDL_mixer

http://www.jonatkins.org/SDL_mixer

i

Table of Contents

1 Overview . 1

2 Getting Started. 3
2.1 Includes . 4
2.2 Compiling . 5

3 Conflicts . 6

4 Functions . 7
4.1 General . 8

4.1.1 Mix Linked Version . 9
4.1.2 Mix Init . 10
4.1.3 Mix Quit . 11
4.1.4 Mix OpenAudio . 12
4.1.5 Mix CloseAudio . 14
4.1.6 Mix SetError . 15
4.1.7 Mix GetError . 16
4.1.8 Mix QuerySpec . 17

4.2 Samples . 18
4.2.1 Mix GetNumChunkDecoders . 19
4.2.2 Mix GetChunkDecoder. 20
4.2.3 Mix LoadWAV . 21
4.2.4 Mix LoadWAV RW . 22
4.2.5 Mix QuickLoad WAV . 23
4.2.6 Mix QuickLoad RAW . 24
4.2.7 Mix VolumeChunk . 25
4.2.8 Mix FreeChunk . 26

4.3 Channels . 27
4.3.1 Mix AllocateChannels . 28
4.3.2 Mix Volume . 29
4.3.3 Mix PlayChannel . 30
4.3.4 Mix PlayChannelTimed . 31
4.3.5 Mix FadeInChannel . 32
4.3.6 Mix FadeInChannelTimed . 33
4.3.7 Mix Pause . 34
4.3.8 Mix Resume . 35
4.3.9 Mix HaltChannel . 36
4.3.10 Mix ExpireChannel . 37
4.3.11 Mix FadeOutChannel . 38
4.3.12 Mix ChannelFinished . 39
4.3.13 Mix Playing . 40
4.3.14 Mix Paused . 41

ii

4.3.15 Mix FadingChannel . 42
4.3.16 Mix GetChunk . 43

4.4 Groups . 44
4.4.1 Mix ReserveChannels . 45
4.4.2 Mix GroupChannel . 46
4.4.3 Mix GroupChannels . 47
4.4.4 Mix GroupCount . 48
4.4.5 Mix GroupAvailable . 49
4.4.6 Mix GroupOldest . 50
4.4.7 Mix GroupNewer . 51
4.4.8 Mix FadeOutGroup . 52
4.4.9 Mix HaltGroup . 53

4.5 Music . 54
4.5.1 Mix GetNumMusicDecoders . 55
4.5.2 Mix GetMusicDecoder . 56
4.5.3 Mix LoadMUS . 57
4.5.4 Mix FreeMusic . 58
4.5.5 Mix PlayMusic . 59
4.5.6 Mix FadeInMusic . 60
4.5.7 Mix FadeInMusicPos . 61
4.5.8 Mix HookMusic . 62
4.5.9 Mix VolumeMusic . 63
4.5.10 Mix PauseMusic . 64
4.5.11 Mix ResumeMusic . 65
4.5.12 Mix RewindMusic . 66
4.5.13 Mix SetMusicPosition . 67
4.5.14 Mix SetMusicCMD . 68
4.5.15 Mix HaltMusic . 69
4.5.16 Mix FadeOutMusic . 70
4.5.17 Mix HookMusicFinished . 71
4.5.18 Mix GetMusicType . 72
4.5.19 Mix PlayingMusic . 73
4.5.20 Mix PausedMusic. 74
4.5.21 Mix FadingMusic . 75
4.5.22 Mix GetMusicHookData . 76

4.6 Effects . 77
4.6.1 Mix RegisterEffect . 78
4.6.2 Mix UnregisterEffect . 79
4.6.3 Mix UnregisterAllEffects . 80
4.6.4 Mix SetPostMix . 81
4.6.5 Mix SetPanning . 82
4.6.6 Mix SetDistance . 83
4.6.7 Mix SetPosition . 84
4.6.8 Mix SetReverseStereo . 85

iii

5 Types . 86
5.1 Mix Chunk . 87
5.2 Mix Music . 88
5.3 Mix MusicType . 89
5.4 Mix Fading . 90
5.5 Mix EffectFunc t. 91
5.6 Mix EffectDone t . 92

6 Defines. 93

7 Glossary . 94

Index . 95

Chapter 1: Overview 1

1 Overview

A Little Bit About Me

I am currently, as I write this document, a programmer for Raytheon. There I do all sorts
of communications, network, GUI, and other general programming tasks in C/C++ on the
Solaris and sometimes Linux Operating Systems. I have been programming sound code in
my free time for only a little while now. Sound is an integral part to any game. The human
senses are mostly starved during video game play. there’s only some tactile feedback on
some controlers, and of course the eyes are in use but only for about 30% of their viewing
area. So to add more we do need sound to help the game player feel more in the action,
and to set certain moods as the game progresses. Sound ends up accounting for perhaps
50% or more of a gamers experience. Music and sound effects are all integral parts of the
gaming experience. While this document doesn’t explain how to get music and samples to
use, it will explain how to use them with SDL mixer.
Feel free to contact me: JonathanCAtkins@gmail.com

I am also usually on IRC at irc.freenode.net in the #SDL channel as LIM

mailto:JonathanCAtkins@gmail.com

Chapter 1: Overview 2

This is the README in the SDL mixer source archive.� �
SDL mixer 1.2
The latest version of this library is available from:

SDL mixer Homepage
Due to popular demand, here is a simple multi-channel audio mixer. It supports 8

channels of 16 bit stereo audio, plus a single channel of music, mixed by the popular MikMod
MOD, Timidity MIDI and SMPEG MP3 libraries.

See the header file SDL mixer.h and the examples playwave.c and playmus.c for docu-
mentation on this mixer library.

The mixer can currently load Microsoft WAVE files and Creative Labs VOC files as
audio samples, and can load MIDI files via Timidity and the following music formats via
MikMod: .MOD .S3M .IT .XM. It can load Ogg Vorbis streams as music if built with the
Ogg Vorbis libraries, and finally it can load MP3 music using the SMPEG library.

The process of mixing MIDI files to wave output is very CPU intensive, so if playing
regular WAVE files sound great, but playing MIDI files sound choppy, try using 8-bit audio,
mono audio, or lower frequencies.

To play MIDI files, you’ll need to get a complete set of GUS patches from: Timidity
GUS Patches and unpack them in /usr/local/lib under UNIX, and C:\ under Win32.

This library is available under the GNU Library General Public License, see the file
"COPYING" for details.
 	

http://www.libsdl.org/projects/SDL_mixer/
http://www.libsdl.org/projects/mixer/timidity/timidity.tar.gz
http://www.libsdl.org/projects/mixer/timidity/timidity.tar.gz

Chapter 2: Getting Started 3

2 Getting Started

This assumes you have gotten SDL mixer and installed it on your system. SDL mixer has
an INSTALL document in the source distribution to help you get it compiled and installed.
Generally, installation consists of:� �
./configure
make
make install
 	
SDL mixer supports playing music and sound samples from the following formats:
- WAVE/RIFF (.wav)
- AIFF (.aiff)
- VOC (.voc)
- MOD (.mod .xm .s3m .669 .it .med and more) requiring libmikmod on system
- MIDI (.mid) using timidity or native midi hardware
- OggVorbis (.ogg) requiring ogg/vorbis libraries on system
- MP3 (.mp3) requiring SMPEG or MAD library on system
- FLAC (.flac) requiring the FLAC library on system - also any command-line player, which
is not mixed by SDL mixer...

You may also want to look at some demonstration code which may be downloaded from:
http://www.jonatkins.org/SDL_mixer/

http://www.jonatkins.org/SDL_mixer/

Chapter 2: Getting Started 4

2.1 Includes

To use SDL mixer functions in a C/C++ source code file, you must use the SDL mixer.h
include file:� �

#include "SDL_mixer.h"
 	

Chapter 2: Getting Started 5

2.2 Compiling

To link with SDL mixer you should use sdl-config to get the required SDL compilation
options. After that, compiling with SDL mixer is quite easy.
Note: Some systems may not have the SDL mixer library and include file in the same place
as the SDL library and includes are located, in that case you will need to add more -I and
-L paths to these command lines.� �

Simple Example for compiling an object file:
cc -c ‘sdl-config --cflags‘ mysource.c

Simple Example for compiling an object file:
cc -o myprogram mysource.o ‘sdl-config --libs‘ -lSDL_mixer
 	
Now myprogram is ready to run.

Chapter 3: Conflicts 6

3 Conflicts

When using SDL mixer functions you need to avoid the following functions from SDL:

SDL_OpenAudio
Use Mix_OpenAudio instead.

SDL_CloseAudio
Use Mix_CloseAudio instead.

SDL_PauseAudio
Use Mix_Pause(-1) and Mix_PauseMusic instead, to pause.
Use Mix_Resume(-1) and Mix_ResumeMusic instead, to unpause.

SDL_LockAudio
This is just not needed since SDL mixer handles this for you.
Using it may cause problems as well.

SDL_UnlockAudio
This is just not needed since SDL mixer handles this for you.
Using it may cause problems as well.

You may call the following functions freely:

SDL_AudioDriverName
This will still work as usual.

SDL_GetAudioStatus
This will still work, though it will likely return SDL AUDIO PLAYING even
though SDL mixer is just playing silence.

It is also a BAD idea to call SDL mixer and SDL audio functions from a callback.
Callbacks include Effects functions and other SDL mixer audio hooks.

Chapter 4: Functions 7

4 Functions

These are the functions in the SDL mixer API.

Chapter 4: Functions 8

4.1 General

These functions are useful, as they are the only/best ways to work with SDL mixer.

Chapter 4: Functions 9

4.1.1 Mix Linked Version

const SDL_version *Mix Linked Version()
void SDL MIXER VERSION(SDL_version *compile_version)

This works similar to SDL_Linked_Version and SDL VERSION.
Using these you can compare the runtime version to the version that you compiled with.� �
SDL_version compile_version;
const SDL_version *link_version=Mix_Linked_Version();
SDL_MIXER_VERSION(&compile_version);
printf("compiled with SDL_mixer version: %d.%d.%d\n",

compile_version.major,
compile_version.minor,
compile_version.patch);

printf("running with SDL_mixer version: %d.%d.%d\n",
link_version->major,
link_version->minor,
link_version->patch);
 	

See Also:
Section 4.1.4 [Mix OpenAudio], page 12, Section 4.1.8 [Mix QuerySpec], page 17

Chapter 4: Functions 10

4.1.2 Mix Init

int Mix Init(int flags)

flags bitwise OR’d set of sample/music formats to support by loading a library now.
The values you may OR together to pass in are:
MIX INIT FLAC
MIX INIT MOD
MIX INIT MP3
MIX INIT OGG

Initialize by loading support as indicated by the flags, or at least return success if support
is already loaded. You may call this multiple times, which will actually require you to call
Mix_Quit just once to clean up. You may call this function with a 0 to retrieve whether
support was built-in or not loaded yet.
Note: you can call Mix_Init with the right MIX INIT * flags OR’d together before you
program gets busy, to prevent a later hiccup while it loads and unloads the library, and to
check that you do have the support that you need before you try and use it.
Note: this function does not always set the error string, so do not depend on Mix_GetError
being meaningful all the time.
Returns: a bitmask of all the currently initted sample/music loaders.� �
// load support for the OGG and MOD sample/music formats
int flags=MIX_INIT_OGG|MIX_INIT_MOD;
int initted=Mix_Init(flags);
if(initted&flags != flags) {

printf("Mix_Init: Failed to init required ogg and mod support!\n");
printf("Mix_Init: %s\n", Mix_GetError());
// handle error

}
 	
See Also:
Section 4.1.3 [Mix Quit], page 11

Chapter 4: Functions 11

4.1.3 Mix Quit

void Mix Quit()

This function cleans up all dynamically loaded library handles, freeing memory. If support
is required again it will be initialized again, either by Mix_Init or loading a sample or some
music with dynamic support required. You may call this function when Mix Load functions
are no longer needed for the MIX INIT * formats. You should call this function for each
time Mix_Init was called, otherwise it may not free all the dynamic library resources until
the program ends. This is done so that multiple unrelated modules of a program may call
Mix_Init and Mix_Quit without affecting the others performance and needs.� �
// indicate that we are ready to unload the dynamically loaded libraries
Mix_Quit();
 	
NOTE: Since each call to Mix_Init may set different flags, there is no way, currently, to
request how many times each one was initted. In other words, the only way to quit for sure
is to do a loop like so:

� �
// force a quit
while(Mix_Init(0))

Mix_Quit();
 	
See Also:
Section 4.1.2 [Mix Init], page 10

Chapter 4: Functions 12

4.1.4 Mix OpenAudio

int Mix OpenAudio(int frequency, Uint16 format, int channels, int chunksize)

frequency Output sampling frequency in samples per second (Hz).
you might use MIX DEFAULT FREQUENCY(22050) since that is a good
value for most games.

format Output sample format.

channels Number of sound channels in output.
Set to 2 for stereo, 1 for mono. This has nothing to do with mixing channels.

chunksize Bytes used per output sample.

Initialize the mixer API.
This must be called before using other functions in this library.
SDL must be initialized with SDL INIT AUDIO before this call. frequency would be 44100
for 44.1KHz, which is CD audio rate. Most games use 22050, because 44100 requires too
much CPU power on older computers. chunksize is the size of each mixed sample. The
smaller this is the more your hooks will be called. If make this too small on a slow system,
sound may skip. If made to large, sound effects will lag behind the action more. You want a
happy medium for your target computer. You also may make this 4096, or larger, if you are
just playing music. MIX CHANNELS(8) mixing channels will be allocated by default. You
may call this function multiple times, however you will have to call Mix_CloseAudio just
as many times for the device to actually close. The format will not changed on subsequent
calls until fully closed. So you will have to close all the way before trying to open with
different format parameters.
format is based on SDL audio support, see SDL audio.h. Here are the values listed there:

AUDIO U8
Unsigned 8-bit samples

AUDIO S8
Signed 8-bit samples

AUDIO U16LSB
Unsigned 16-bit samples, in little-endian byte order

AUDIO S16LSB
Signed 16-bit samples, in little-endian byte order

AUDIO U16MSB
Unsigned 16-bit samples, in big-endian byte order

AUDIO S16MSB
Signed 16-bit samples, in big-endian byte order

Chapter 4: Functions 13

AUDIO U16
same as AUDIO U16LSB (for backwards compatability probably)

AUDIO S16
same as AUDIO S16LSB (for backwards compatability probably)

AUDIO U16SYS
Unsigned 16-bit samples, in system byte order

AUDIO S16SYS
Signed 16-bit samples, in system byte order

MIX DEFAULT FORMAT is the same as AUDIO S16SYS.
Returns: 0 on success, -1 on errors� �
// start SDL with audio support
if(SDL_Init(SDL_INIT_AUDIO)==-1) {

printf("SDL_Init: %s\n", SDL_GetError());
exit(1);

}
// open 44.1KHz, signed 16bit, system byte order,
// stereo audio, using 1024 byte chunks
if(Mix_OpenAudio(44100, MIX_DEFAULT_FORMAT, 2, 1024)==-1) {

printf("Mix_OpenAudio: %s\n", Mix_GetError());
exit(2);

}
 	
See Also:
Section 4.1.5 [Mix CloseAudio], page 14, Section 4.1.8 [Mix QuerySpec], page 17, Sec-
tion 4.3.1 [Mix AllocateChannels], page 28

Chapter 4: Functions 14

4.1.5 Mix CloseAudio

void Mix CloseAudio()

Shutdown and cleanup the mixer API.
After calling this all audio is stopped, the device is closed, and the SDL mixer functions
should not be used. You may, of course, use Mix OpenAudio to start the functionality
again.
Note: This function doesn’t do anything until you have called it the same number of times
that you called Mix OpenAudio. You may use Mix_QuerySpec to find out how many times
Mix_CloseAudio needs to be called before the device is actually closed.� �
Mix_CloseAudio();
// you could SDL_Quit(); here...or not.
 	
See Also:
Section 4.1.4 [Mix OpenAudio], page 12, Section 4.1.8 [Mix QuerySpec], page 17

Chapter 4: Functions 15

4.1.6 Mix SetError

void Mix SetError(const char *fmt, ...)

This is the same as SDL SetError, which sets the error string which may be fetched with
Mix GetError (or SDL GetError). This functions acts like printf, except that it is limited
to SDL ERRBUFIZE(1024) chars in length. It only accepts the following format types:
%s, %d, %f, %p. No variations are supported, like %.2f would not work. For any more
specifics read the SDL docs.� �
int mymixfunc(int i) {

Mix_SetError("mymixfunc is not implemented! %d was passed in.",i);
return(-1);

}
 	
See Also:
Section 4.1.7 [Mix GetError], page 16

Chapter 4: Functions 16

4.1.7 Mix GetError

char *Mix GetError()

This is the same as SDL GetError, which returns the last error set as a string which you
may use to tell the user what happened when an error status has been returned from an
SDL mixer function call.
Returns: a char pointer (string) containing a humam readble version or the reason for the
last error that occured.� �
printf("Oh My Goodness, an error : %s", Mix_GetError());
 	
See Also:
Section 4.1.6 [Mix SetError], page 15

Chapter 4: Functions 17

4.1.8 Mix QuerySpec

int Mix QuerySpec(int *frequency, Uint16 *format, int *channels)

frequency A pointer to an int where the frequency actually used by the opened audio
device will be stored.

format A pointer to a Uint16 where the output format actually being used by the audio
device will be stored.

channels A pointer to an int where the number of audio channels will be stored.
2 will mean stereo, 1 will mean mono.

Get the actual audio format in use by the opened audio device. This may or may not match
the parameters you passed to Mix OpenAudio.
Returns: 0 on error. If the device was open the number of times it was opened will be
returned. The values of the arguments variables are not set on an error.� �
// get and print the audio format in use
int numtimesopened, frequency, channels;
Uint16 format;
numtimesopened=Mix_QuerySpec(&frequency, &format, &channels);
if(!numtimesopened) {

printf("Mix_QuerySpec: %s\n",Mix_GetError());
}
else {

char *format_str="Unknown";
switch(format) {

case AUDIO_U8: format_str="U8"; break;
case AUDIO_S8: format_str="S8"; break;
case AUDIO_U16LSB: format_str="U16LSB"; break;
case AUDIO_S16LSB: format_str="S16LSB"; break;
case AUDIO_U16MSB: format_str="U16MSB"; break;
case AUDIO_S16MSB: format_str="S16MSB"; break;

}
printf("opened=%d times frequency=%dHz format=%s channels=%d",

numtimesopened, frequency, format_str, channels);
}
 	
See Also:
Section 4.1.4 [Mix OpenAudio], page 12

Chapter 4: Functions 18

4.2 Samples

These functions work with Mix_Chunk samples.

Chapter 4: Functions 19

4.2.1 Mix GetNumChunkDecoders

int Mix GetNumChunkDecoders()

Get the number of sample chunk decoders available from the Mix_GetChunkDecoder func-
tion. This number can be different for each run of a program, due to the change in avail-
ability of shared libraries that support each format.
Returns: The number of sample chunk decoders available.� �
// print the number of sample chunk decoders available
printf("There are %d sample chunk deocoders available\n", Mix_GetNumChunkDecoders());
 	
See Also:
Section 4.5.1 [Mix GetNumMusicDecoders], page 55, Section 4.2.2 [Mix GetChunkDecoder],
page 20, Section 4.2.3 [Mix LoadWAV], page 21

Chapter 4: Functions 20

4.2.2 Mix GetChunkDecoder

const char *Mix GetChunkDecoder(int index)

index The index number of sample chunk decoder to get.
In the range from 0(zero) to Mix GetNumChunkDecoders()-1, inclusive.

Get the name of the indexed sample chunk decoder. You need to get the number of sample
chunk decoders available using the Mix_GetNumChunkDecoders function.
Returns: The name of the indexed sample chunk decoder. This string is owned by the
SDL mixer library, do not modify or free it. It is valid until you call Mix_CloseAudio the
final time.� �
// print sample chunk decoders available
int i,max=Mix_GetNumChunkDecoders();
for(i=0; i<max; ++i)
printf("Sample chunk decoder %d is for %s",Mix_GetChunkDecoder(i));
 	
See Also:
Section 4.2.1 [Mix GetNumChunkDecoders], page 19, Section 4.5.2 [Mix GetMusicDecoder],
page 56, Section 4.2.3 [Mix LoadWAV], page 21

Chapter 4: Functions 21

4.2.3 Mix LoadWAV

Mix_Chunk *Mix LoadWAV(char *file)

file File name to load sample from.

Load file for use as a sample. This is actually Mix_LoadWAV_RW(SDL_RWFromFile(file,
"rb"), 1). This can load WAVE, AIFF, RIFF, OGG, and VOC files.
Note: You must call SDL OpenAudio before this. It must know the output characteristics
so it can convert the sample for playback, it does this conversion at load time.
Returns: a pointer to the sample as a Mix_Chunk. NULL is returned on errors.� �
// load sample.wav in to sample
Mix_Chunk *sample;
sample=Mix_LoadWAV("sample.wav");
if(!sample) {

printf("Mix_LoadWAV: %s\n", Mix_GetError());
// handle error

}
 	
See Also:
Section 4.2.4 [Mix LoadWAV RW], page 22, Section 4.2.5 [Mix QuickLoad WAV], page 23,
Section 4.2.8 [Mix FreeChunk], page 26

Chapter 4: Functions 22

4.2.4 Mix LoadWAV RW

Mix_Chunk *Mix LoadWAV RW(SDL_RWops *src, int freesrc)

src The source SDL RWops as a pointer. The sample is loaded from this.

freesrc A non-zero value mean is will automatically close/free the src for you.

Load src for use as a sample. This can load WAVE, AIFF, RIFF, OGG, and VOC formats.
Using SDL_RWops is not covered here, but they enable you to load from almost any source.
Note: You must call SDL OpenAudio before this. It must know the output characteristics
so it can convert the sample for playback, it does this conversion at load time.
Returns: a pointer to the sample as a Mix_Chunk. NULL is returned on errors.� �
// load sample.wav in to sample
Mix_Chunk *sample;
sample=Mix_LoadWAV_RW(SDL_RWFromFile("sample.wav", "rb"), 1);
if(!sample) {

printf("Mix_LoadWAV_RW: %s\n", Mix_GetError());
// handle error

}
 	
See Also:
Section 4.2.3 [Mix LoadWAV], page 21, Section 4.2.5 [Mix QuickLoad WAV], page 23, Sec-
tion 4.2.8 [Mix FreeChunk], page 26

Chapter 4: Functions 23

4.2.5 Mix QuickLoad WAV

Mix_Chunk *Mix QuickLoad WAV(Uint8 *mem)

mem Memory buffer containing a WAVE file in output format.

Load mem as a WAVE/RIFF file into a new sample. The WAVE in mem must be already
in the output format. It would be better to use Mix_LoadWAV_RW if you aren’t sure.
Note: This function does very little checking. If the format mismatches the output format,
or if the buffer is not a WAVE, it will not return an error. This is probably a dangerous
function to use.
Returns: a pointer to the sample as a Mix_Chunk. NULL is returned on errors.� �
// quick-load a wave from memory
// Uint8 *wave; // I assume you have the wave loaded raw,

// or compiled in the program...
Mix_Chunk *wave_chunk;
if(!(wave_chunk=Mix_QuickLoad_WAV(wave))) {

printf("Mix_QuickLoad_WAV: %s\n", Mix_GetError());
// handle error

}
 	
See Also:
Section 4.2.3 [Mix LoadWAV], page 21, Section 4.2.6 [Mix QuickLoad RAW], page 24,
Section 4.2.8 [Mix FreeChunk], page 26

Chapter 4: Functions 24

4.2.6 Mix QuickLoad RAW

Mix_Chunk *Mix QuickLoad RAW(Uint8 *mem)

mem Memory buffer containing a WAVE file in output format.

Load mem as a raw sample. The data in mem must be already in the output format. If
you aren’t sure what you are doing, this is not a good function for you!
Note: This function does very little checking. If the format mismatches the output format
it will not return an error. This is probably a dangerous function to use.
Returns: a pointer to the sample as a Mix_Chunk. NULL is returned on errors, such as
when out of memory.� �
// quick-load a raw sample from memory
// Uint8 *raw; // I assume you have the raw data here,

// or compiled in the program...
Mix_Chunk *raw_chunk;
if(!(raw_chunk=Mix_QuickLoad_RAW(raw))) {

printf("Mix_QuickLoad_RAW: %s\n", Mix_GetError());
// handle error

}
 	
See Also:
Section 4.2.3 [Mix LoadWAV], page 21, Section 4.2.5 [Mix QuickLoad WAV], page 23, Sec-
tion 4.2.8 [Mix FreeChunk], page 26

Chapter 4: Functions 25

4.2.7 Mix VolumeChunk

int Mix VolumeChunk(Mix_Chunk *chunk, int volume)

chunk Pointer to the Mix Chunk to set the volume in.

volume The volume to use from 0 to MIX MAX VOLUME(128).
If greater than MIX MAX VOLUME,
then it will be set to MIX MAX VOLUME.
If less than 0 then chunk->volume will not be set.

Set chunk->volume to volume.
The volume setting will take effect when the chunk is used on a channel, being mixed into
the output.
Returns: previous chunk->volume setting. if you passed a negative value for volume then
this volume is still the current volume for the chunk.� �
// set the sample’s volume to 1/2
// Mix_Chunk *sample;
int previous_volume;
previous_volume=Mix_VolumeChunk(sample, MIX_MAX_VOLUME/2);
printf("previous_volume: %d\n", previous_volume);
 	
See Also:
Section 5.1 [Mix Chunk], page 87

Chapter 4: Functions 26

4.2.8 Mix FreeChunk

void Mix FreeChunk(Mix_Chunk *chunk)

chunk Pointer to the Mix Chunk to free.

Free the memory used in chunk, and free chunk itself as well. Do not use chunk after this
without loading a new sample to it. Note: It’s a bad idea to free a chunk that is still being
played...� �
// free the sample
// Mix_Chunk *sample;
Mix_FreeChunk(sample);
sample=NULL; // to be safe...
 	
See Also:
Section 4.2.3 [Mix LoadWAV], page 21, Section 4.2.4 [Mix LoadWAV RW], page 22, Sec-
tion 4.2.5 [Mix QuickLoad WAV], page 23,

Chapter 4: Functions 27

4.3 Channels

These functions work with sound effect mixer channels. Music is not affected by these
functions.

Chapter 4: Functions 28

4.3.1 Mix AllocateChannels

int Mix AllocateChannels(int numchans)

numchans Number of channels to allocate for mixing.
A negative number will not do anything, it will tell you how many channels are
currently allocated.

Set the number of channels being mixed. This can be called multiple times, even with
sounds playing. If numchans is less than the current number of channels, then the higher
channels will be stopped, freed, and therefore not mixed any longer. It’s probably not a
good idea to change the size 1000 times a second though.
If any channels are deallocated, any callback set by Mix_ChannelFinished will be called
when each channel is halted to be freed. Note: passing in zero WILL free all mixing
channels, however music will still play.
Returns: The number of channels allocated. Never fails...but a high number of channels
can segfault if you run out of memory. We’re talking REALLY high!� �
// allocate 16 mixing channels
Mix_AllocateChannels(16);
 	
See Also:
Section 4.1.4 [Mix OpenAudio], page 12

Chapter 4: Functions 29

4.3.2 Mix Volume

int Mix Volume(int channel, int volume)

channel Channel to set mix volume for.
-1 will set the volume for all allocated channels.

volume The volume to use from 0 to MIX MAX VOLUME(128).
If greater than MIX MAX VOLUME,
then it will be set to MIX MAX VOLUME.
If less than 0 then the volume will not be set.

Set the volume for any allocated channel. If channel is -1 then all channels at are set at
once. The volume is applied during the final mix, along with the sample volume. So setting
this volume to 64 will halve the output of all samples played on the specified channel. All
channels default to a volume of 128, which is the max. Newly allocated channels will have
the max volume set, so setting all channels volumes does not affect subsequent channel
allocations.
Returns: current volume of the channel. If channel is -1, the average volume is returned.� �
// set channel 1 to half volume
Mix_Volume(1,MIX_MAX_VOLUME/2);

// print the average volume
printf("Average volume is %d\n",Mix_Volume(-1,-1));
 	
See Also:
Section 4.2.7 [Mix VolumeChunk], page 25, Section 4.5.9 [Mix VolumeMusic], page 63

Chapter 4: Functions 30

4.3.3 Mix PlayChannel

int Mix PlayChannel(int channel, Mix_Chunk *chunk, int loops)

channel Channel to play on, or -1 for the first free unreserved channel.

chunk Sample to play.

loops Number of loops, -1 is infinite loops.
Passing one here plays the sample twice (1 loop).

Play chunk on channel, or if channel is -1, pick the first free unreserved channel. The sample
will play for loops+1 number of times, unless stopped by halt, or fade out, or setting a new
expiration time of less time than it would have originally taken to play the loops, or closing
the mixer.
Note: this just calls Mix_PlayChannelTimed() with ticks set to -1.
Returns: the channel the sample is played on. On any errors, -1 is returned.� �
// play sample on first free unreserved channel
// play it exactly once through
// Mix_Chunk *sample; //previously loaded
if(Mix_PlayChannel(-1, sample, 0)==-1) {

printf("Mix_PlayChannel: %s\n",Mix_GetError());
// may be critical error, or maybe just no channels were free.
// you could allocated another channel in that case...

}
 	
See Also:
Section 4.3.4 [Mix PlayChannelTimed], page 31, Section 4.3.5 [Mix FadeInChannel],
page 32, Section 4.3.9 [Mix HaltChannel], page 36, Section 4.3.10 [Mix ExpireChannel],
page 37, Section 4.4.1 [Mix ReserveChannels], page 45

Chapter 4: Functions 31

4.3.4 Mix PlayChannelTimed

int Mix PlayChannelTimed(int channel, Mix_Chunk *chunk, int loops, int ticks)

channel Channel to play on, or -1 for the first free unreserved channel.

chunk Sample to play.

loops Number of loops, -1 is infinite loops.
Passing one here plays the sample twice (1 loop).

ticks Millisecond limit to play sample, at most.
If not enough loops or the sample chunk is not long enough, then the sample
may stop before this timeout occurs.
-1 means play forever.

If the sample is long enough and has enough loops then the sample will stop after ticks mil-
liseconds. Otherwise this function is the same as Section 4.3.3 [Mix PlayChannel], page 30.
Returns: the channel the sample is played on. On any errors, -1 is returned.� �
// play sample on first free unreserved channel
// play it for half a second
// Mix_Chunk *sample; //previously loaded
if(Mix_PlayChannelTimed(-1, sample, -1 , 500)==-1) {

printf("Mix_PlayChannel: %s\n",Mix_GetError());
// may be critical error, or maybe just no channels were free.
// you could allocated another channel in that case...

}
 	
See Also:
Section 4.3.3 [Mix PlayChannel], page 30, Section 4.3.6 [Mix FadeInChannelTimed],
page 33, Section 4.3.11 [Mix FadeOutChannel], page 38, Section 4.4.1
[Mix ReserveChannels], page 45

Chapter 4: Functions 32

4.3.5 Mix FadeInChannel

int Mix FadeInChannel(int channel, Mix_Chunk *chunk, int loops, int ms)

channel Channel to play on, or -1 for the first free unreserved channel.

chunk Sample to play.

loops Number of loops, -1 is infinite loops.
Passing one here plays the sample twice (1 loop).

ms Milliseconds of time that the fade-in effect should take to go from silence to full
volume.

Play chunk on channel, or if channel is -1, pick the first free unreserved channel.
The channel volume starts at 0 and fades up to full volume over ms milliseconds of time.
The sample may end before the fade-in is complete if it is too short or doesn’t have enough
loops. The sample will play for loops+1 number of times, unless stopped by halt, or fade
out, or setting a new expiration time of less time than it would have originally taken to
play the loops, or closing the mixer.
Note: this just calls Mix_FadeInChannelTimed() with ticks set to -1.
Returns: the channel the sample is played on. On any errors, -1 is returned.� �
// play sample on first free unreserved channel
// play it exactly 3 times through
// fade in over one second
// Mix_Chunk *sample; //previously loaded
if(Mix_FadeInChannel(-1, sample, 2, 1000)==-1) {

printf("Mix_FadeInChannel: %s\n",Mix_GetError());
// may be critical error, or maybe just no channels were free.
// you could allocated another channel in that case...

}
 	
See Also:
Section 4.3.3 [Mix PlayChannel], page 30, Section 4.3.6 [Mix FadeInChannelTimed],
page 33, Section 4.3.15 [Mix FadingChannel], page 42, Section 4.3.11 [Mix FadeOutChannel],
page 38, Section 4.4.1 [Mix ReserveChannels], page 45

Chapter 4: Functions 33

4.3.6 Mix FadeInChannelTimed

int Mix FadeInChannelTimed(int channel, Mix_Chunk *chunk,
int loops, int ms, int ticks)

channel Channel to play on, or -1 for the first free unreserved channel.

chunk Sample to play.

loops Number of loops, -1 is infinite loops.
Passing one here plays the sample twice (1 loop).

ms Milliseconds of time that the fade-in effect should take to go from silence to full
volume.

ticks Millisecond limit to play sample, at most.
If not enough loops or the sample chunk is not long enough, then the sample
may stop before this timeout occurs.
-1 means play forever.

If the sample is long enough and has enough loops then the sample will stop after ticks
milliseconds. Otherwise this function is the same as Section 4.3.5 [Mix FadeInChannel],
page 32.
Returns: the channel the sample is played on. On any errors, -1 is returned.� �
// play sample on first free unreserved channel
// play it for half a second
// Mix_Chunk *sample; //previously loaded
if(Mix_PlayChannelTimed(-1, sample, -1 , 500)==-1) {

printf("Mix_PlayChannel: %s\n",Mix_GetError());
// may be critical error, or maybe just no channels were free.
// you could allocated another channel in that case...

}
 	
See Also:
Section 4.3.4 [Mix PlayChannelTimed], page 31, Section 4.3.5 [Mix FadeInChannel],
page 32, Section 4.3.15 [Mix FadingChannel], page 42, Section 4.3.9 [Mix HaltChannel],
page 36, Section 4.3.10 [Mix ExpireChannel], page 37, Section 4.4.1 [Mix ReserveChannels],
page 45

Chapter 4: Functions 34

4.3.7 Mix Pause

void Mix Pause(int channel)

channel Channel to pause on, or -1 for all channels.

Pause channel, or all playing channels if -1 is passed in. You may still halt a paused channel.
Note: Only channels which are actively playing will be paused.� �
// pause all sample playback
Mix_Pause(-1);
 	
See Also:
Section 4.3.8 [Mix Resume], page 35, Section 4.3.14 [Mix Paused], page 41, Section 4.3.9
[Mix HaltChannel], page 36

Chapter 4: Functions 35

4.3.8 Mix Resume

void Mix Resume(int channel)

channel Channel to resume playing, or -1 for all channels.

Unpause channel, or all playing and paused channels if -1 is passed in.� �
// resume playback on all previously active channels
Mix_Resume(-1);
 	
See Also:
Section 4.3.7 [Mix Pause], page 34, Section 4.3.14 [Mix Paused], page 41

Chapter 4: Functions 36

4.3.9 Mix HaltChannel

int Mix HaltChannel(int channel)

channel Channel to stop playing, or -1 for all channels.

Halt channel playback, or all channels if -1 is passed in.
Any callback set by Mix_ChannelFinished will be called.
Returns: always returns zero. (kinda silly)� �
// halt playback on all channels
Mix_HaltChannel(-1);
 	
See Also:
Section 4.3.10 [Mix ExpireChannel], page 37, Section 4.3.11 [Mix FadeOutChannel],
page 38, Section 4.3.12 [Mix ChannelFinished], page 39

Chapter 4: Functions 37

4.3.10 Mix ExpireChannel

int Mix ExpireChannel(int channel, int ticks)

channel Channel to stop playing, or -1 for all channels.

ticks Millisecons until channel(s) halt playback.

Halt channel playback, or all channels if -1 is passed in, after ticks milliseconds. Any
callback set by Mix_ChannelFinished will be called when the channel expires.
Returns: Number of channels set to expire. Whether or not they are active.� �
// halt playback on all channels in 2 seconds
Mix_ExpireChannel(-1, 2000);
 	
See Also:
Section 4.3.9 [Mix HaltChannel], page 36, Section 4.3.11 [Mix FadeOutChannel], page 38,
Section 4.3.12 [Mix ChannelFinished], page 39

Chapter 4: Functions 38

4.3.11 Mix FadeOutChannel

int Mix FadeOutChannel(int channel, int ms)

channel Channel to fade out, or -1 to fade all channels out.

ms Milliseconds of time that the fade-out effect should take to go to silence, starting
now.

Gradually fade out which channel over ms milliseconds starting from now. The channel will
be halted after the fade out is completed. Only channels that are playing are set to fade
out, including paused channels. Any callback set by Mix_ChannelFinished will be called
when the channel finishes fading out.
Returns: The number of channels set to fade out.� �
// fade out all channels to finish 3 seconds from now
printf("starting fade out of %d channels\n", Mix_FadeOutChannel(-1, 3000));
 	
See Also:
Section 4.3.5 [Mix FadeInChannel], page 32, Section 4.3.6 [Mix FadeInChannelTimed],
page 33, Section 4.3.15 [Mix FadingChannel], page 42, Section 4.3.12 [Mix ChannelFinished],
page 39

Chapter 4: Functions 39

4.3.12 Mix ChannelFinished

void Mix ChannelFinished(void (*channel_finished)(int channel))

channel finished
Function to call when any channel finishes playback.

When channel playback is halted, then the specified channel finished function is called. The
channel parameter will contain the channel number that has finished.
NOTE: NEVER call SDL Mixer functions, nor SDL_LockAudio, from a callback function.� �
// a simple channel_finished function
void channelDone(int channel) {

printf("channel %d finished playback.\n",channel);
}
 	� �
// make a channelDone function
void channelDone(int channel)
{

printf("channel %d finished playing.\n", channel);
}
...
// set the callback for when a channel stops playing
Mix_ChannelFinished(channelDone);
 	
See Also:
Section 4.3.9 [Mix HaltChannel], page 36, Section 4.3.10 [Mix ExpireChannel], page 37

Chapter 4: Functions 40

4.3.13 Mix Playing

int Mix Playing(int channel)

channel Channel to test whether it is playing or not.
-1 will tell you how many channels are playing.

Tells you if channel is playing, or not.
Note: Does not check if the channel has been paused.
Returns: Zero if the channel is not playing. Otherwise if you passed in -1, the number of
channels playing is returned. If you passed in a specific channel, then 1 is returned if it is
playing.� �
// check how many channels are playing samples
printf("%d channels are playing\n", Mix_Playing(-1));
 	
See Also:
Section 4.3.14 [Mix Paused], page 41, Section 5.4 [Mix Fading], page 90, Section 4.3.3
[Mix PlayChannel], page 30, Section 4.3.7 [Mix Pause], page 34,

Chapter 4: Functions 41

4.3.14 Mix Paused

int Mix Paused(int channel)

channel Channel to test whether it is paused or not.
-1 will tell you how many channels are paused.

Tells you if channel is paused, or not.
Note: Does not check if the channel has been halted after it was paused, which may seem
a little weird.
Returns: Zero if the channel is not paused. Otherwise if you passed in -1, the number of
paused channels is returned. If you passed in a specific channel, then 1 is returned if it is
paused.� �
// check the pause status on all channels
printf("%d channels are paused\n", Mix_Paused(-1));
 	
See Also:
Section 4.3.13 [Mix Playing], page 40, Section 4.3.7 [Mix Pause], page 34, Section 4.3.8
[Mix Resume], page 35

Chapter 4: Functions 42

4.3.15 Mix FadingChannel

Mix_Fading Mix FadingChannel(int which)

which Channel to get the fade activity status from.
-1 is not valid, and will probably crash the program.

Tells you if which channel is fading in, out, or not. Does not tell you if the channel is playing
anything, or paused, so you’d need to test that separately.
Returns: the fading status. Never returns an error.� �
// check the fade status on channel 0
switch(Mix_FadingChannel(0)) {

case MIX_NO_FADING:
printf("Not fading.\n");
break;

case MIX_FADING_OUT:
printf("Fading out.\n");
break;

case MIX_FADING_IN:
printf("Fading in.\n");
break;

}
 	
See Also:
Section 5.4 [Mix Fading], page 90, Section 4.3.13 [Mix Playing], page 40, Section 4.3.14
[Mix Paused], page 41, Section 4.3.5 [Mix FadeInChannel], page 32, Section 4.3.6
[Mix FadeInChannelTimed], page 33, Section 4.3.11 [Mix FadeOutChannel], page 38

Chapter 4: Functions 43

4.3.16 Mix GetChunk

Mix_Chunk *Mix GetChunk(int channel)

channel Channel to get the current Mix Chunk playing.
-1 is not valid, but will not crash the program.

Get the most recent sample chunk pointer played on channel. This pointer may be currently
playing, or just the last used.
Note: The actual chunk may have been freed, so this pointer may not be valid anymore.
Returns: Pointer to the Mix Chunk. NULL is returned if the channel is not allocated, or
if the channel has not played any samples yet.� �
// get the last chunk used by channel 0
printf("Mix_Chunk* last in use on channel 0 was: %08p\n", Mix_GetChunk(0));
 	
See Also:
Section 5.1 [Mix Chunk], page 87, Section 4.3.13 [Mix Playing], page 40

Chapter 4: Functions 44

4.4 Groups

These functions work with groupings of mixer channels.
The default group tag number of -1, which refers to ALL channels.

Chapter 4: Functions 45

4.4.1 Mix ReserveChannels

int Mix ReserveChannels(int num)

num Number of channels to reserve from default mixing.
Zero removes all reservations.

Reserve num channels from being used when playing samples when passing in -1 as a channel
number to playback functions. The channels are reserved starting from channel 0 to num-
1. Passing in zero will unreserve all channels. Normally SDL mixer starts without any
channels reserved.
The following functions are affected by this setting:
Section 4.3.3 [Mix PlayChannel], page 30
Section 4.3.4 [Mix PlayChannelTimed], page 31
Section 4.3.5 [Mix FadeInChannel], page 32
Section 4.3.6 [Mix FadeInChannelTimed], page 33

Returns: The number of channels reserved. Never fails, but may return less channels than
you ask for, depending on the number of channels previously allocated.� �
// reserve the first 8 mixing channels
int reserved_count;
reserved_count=Mix_ReserveChannels(8);
if(reserved_count!=8) {

printf("reserved %d channels from default mixing.\n",reserved_count);
printf("8 channels were not reserved!\n");
// this might be a critical error...

}
 	
See Also:
Section 4.3.1 [Mix AllocateChannels], page 28

Chapter 4: Functions 46

4.4.2 Mix GroupChannel

int Mix GroupChannel(int which, int tag)

which Channel number of channels to assign tag to.

tag A group number Any positive numbers (including zero).
-1 is the default group. Use -1 to remove a group tag essentially.

Add which channel to group tag, or reset it’s group to the default group tag (-1).
Returns: True(1) on success. False(0) is returned when the channel specified is invalid.� �
// add channel 0 to group 1
if(!Mix_GroupChannel(0,1)) {

// bad channel, apparently channel 1 isn’t allocated
}
 	
See Also:
Section 4.4.3 [Mix GroupChannels], page 47, Section 4.3.1 [Mix AllocateChannels], page 28

Chapter 4: Functions 47

4.4.3 Mix GroupChannels

int Mix GroupChannels(int from, int to, int tag)

from First Channel number of channels to assign tag to. Must be less or equal to to.

to Last Channel number of channels to assign tag to. Must be greater or equal to
from.

tag A group number. Any positive numbers (including zero).
-1 is the default group. Use -1 to remove a group tag essentially.

Add channels starting at from up through to to group tag, or reset it’s group to the default
group tag (-1).
Returns: The number of tagged channels on success. If that number is less than to-from+1
then some channels were no tagged because they didn’t exist.� �
// add channels 0 through 7 to group 1
if(Mix_GroupChannels(0,7,1)!=8) {

// some bad channels, apparently some channels aren’t allocated
}
 	
See Also:
Section 4.4.2 [Mix GroupChannel], page 46, Section 4.3.1 [Mix AllocateChannels], page 28

Chapter 4: Functions 48

4.4.4 Mix GroupCount

int Mix GroupCount(int tag)

tag A group number Any positive numbers (including zero).
-1 will count ALL channels.

Count the number of channels in group tag.
Returns: The number of channels found in the group. This function never fails.� �
// count the number of channels in group 1
printf("There are %d channels in group 1\n", Mix_GroupCount(1));
 	
See Also:
Section 4.4.2 [Mix GroupChannel], page 46, Section 4.4.3 [Mix GroupChannels], page 47

Chapter 4: Functions 49

4.4.5 Mix GroupAvailable

int Mix GroupAvailable(int tag)

tag A group number Any positive numbers (including zero).
-1 will search ALL channels.

Find the first available (not playing) channel in group tag.
Returns: The channel found on success. -1 is returned when no channels in the group are
available.� �
// find the first available channel in group 1
int channel;
channel=Mix_GroupAvailable(1);
if (channel==-1) {

// no channel available...
// perhaps search for oldest or newest channel in use...

}
 	
See Also:
Section 4.4.6 [Mix GroupOldest], page 50, Section 4.4.7 [Mix GroupNewer], page 51, Sec-
tion 4.4.2 [Mix GroupChannel], page 46, Section 4.4.3 [Mix GroupChannels], page 47

Chapter 4: Functions 50

4.4.6 Mix GroupOldest

int Mix GroupOldest(int tag)

tag A group number Any positive numbers (including zero).
-1 will search ALL channels.

Find the oldest actively playing channel in group tag.
Returns: The channel found on success. -1 is returned when no channels in the group are
playing or the group is empty.� �
// find the oldest playing channel in group 1
int channel;
channel=Mix_GroupOldest(1);
if (channel==-1) {

// no channel playing or allocated...
// perhaps just search for an available channel...

}
 	
See Also:
Section 4.4.7 [Mix GroupNewer], page 51, Section 4.4.5 [Mix GroupAvailable], page 49,
Section 4.4.2 [Mix GroupChannel], page 46, Section 4.4.3 [Mix GroupChannels], page 47

Chapter 4: Functions 51

4.4.7 Mix GroupNewer

int Mix GroupNewer(int tag)

tag A group number Any positive numbers (including zero).
-1 will search ALL channels.

Find the newest, most recently started, actively playing channel in group tag.
Returns: The channel found on success. -1 is returned when no channels in the group are
playing or the group is empty.� �
// find the newest playing channel in group 1
int channel;
channel=Mix_GroupNewer(1);
if (channel==-1) {

// no channel playing or allocated...
// perhaps just search for an available channel...

}
 	
See Also:
Section 4.4.6 [Mix GroupOldest], page 50, Section 4.4.5 [Mix GroupAvailable], page 49,
Section 4.4.2 [Mix GroupChannel], page 46, Section 4.4.3 [Mix GroupChannels], page 47

Chapter 4: Functions 52

4.4.8 Mix FadeOutGroup

int Mix FadeOutGroup(int tag, int ms)

tag Group to fade out.
NOTE: -1 will NOT fade all channels out. Use Mix_FadeOutChannel(-1) for
that instead.

ms Milliseconds of time that the fade-out effect should take to go to silence, starting
now.

Gradually fade out channels in group tag over ms milliseconds starting from now. The
channels will be halted after the fade out is completed. Only channels that are playing are
set to fade out, including paused channels. Any callback set by Mix_ChannelFinished will
be called when each channel finishes fading out.
Returns: The number of channels set to fade out.� �
// fade out all channels in group 1 to finish 3 seconds from now
printf("starting fade out of %d channels\n", Mix_FadeOutGroup(1, 3000));
 	
See Also:
Section 4.4.9 [Mix HaltGroup], page 53, Section 4.3.11 [Mix FadeOutChannel], page 38,
Section 4.3.15 [Mix FadingChannel], page 42, Section 4.3.12 [Mix ChannelFinished],
page 39

Chapter 4: Functions 53

4.4.9 Mix HaltGroup

int Mix HaltGroup(int tag)

tag Group to fade out.
NOTE: -1 will NOT halt all channels. Use Mix_HaltChannel(-1) for that
instead.

Halt playback on all channels in group tag.
Any callback set by Mix_ChannelFinished will be called once for each channel that stops.
Returns: always returns zero. (more silly than Mix HaltChannel)� �
// halt playback on all channels in group 1
Mix_HaltGroup(1);
 	
See Also:
Section 4.4.8 [Mix FadeOutGroup], page 52, Section 4.3.9 [Mix HaltChannel], page 36,
Section 4.3.12 [Mix ChannelFinished], page 39

Chapter 4: Functions 54

4.5 Music

These functions work with music. Music is not played on a normal mixer channel. Music
is therefore manipulated separately, except in post-processing hooks.

Chapter 4: Functions 55

4.5.1 Mix GetNumMusicDecoders

int Mix GetNumMusicDecoders()

Get the number of music decoders available from the Mix_GetMusicDecoder function. This
number can be different for each run of a program, due to the change in availability of
shared libraries that support each format.
Returns: The number of music decoders available.� �
// print the number of music decoders available
printf("There are %d music deocoders available\n", Mix_GetNumMusicDecoders());
 	
See Also:
Section 4.2.1 [Mix GetNumChunkDecoders], page 19, Section 4.5.2 [Mix GetMusicDecoder],
page 56, Section 4.5.3 [Mix LoadMUS], page 57

Chapter 4: Functions 56

4.5.2 Mix GetMusicDecoder

const char *Mix GetMusicDecoder(int index)

index The index number of music decoder to get.
In the range from 0(zero) to Mix GetNumMusicDecoders()-1, inclusive.

Get the name of the indexed music decoder. You need to get the number of music decoders
available using the Mix_GetNumMusicDecoders function.
Returns: The name of the indexed music decoder. This string is owned by the SDL mixer
library, do not modify or free it. It is valid until you call Mix_CloseAudio the final time.� �
// print music decoders available
int i,max=Mix_GetNumMusicDecoders();
for(i=0; i<max; ++i)
printf("Music decoder %d is for %s",Mix_GetMusicDecoder(i));
 	
See Also:
Section 4.5.1 [Mix GetNumMusicDecoders], page 55, Section 4.2.2 [Mix GetChunkDecoder],
page 20, Section 4.2.3 [Mix LoadWAV], page 21

Chapter 4: Functions 57

4.5.3 Mix LoadMUS

Mix_Music *Mix LoadMUS(const char *file)

file Name of music file to use.

Load music file to use. This can load WAVE, MOD, MIDI, OGG, MP3, FLAC, and any
file that you use a command to play with.
If you are using an external command to play the music, you must call Mix_SetMusicCMD
before this, otherwise the internal players will be used. Alternatively, if you have set an
external command up and don’t want to use it, you must call Mix_SetMusicCMD(NULL) to
use the built-in players again.
Returns: A pointer to a Mix Music. NULL is returned on errors.� �
// load the MP3 file "music.mp3" to play as music
Mix_Music *music;
music=Mix_LoadMUS("music.mp3");
if(!music) {

printf("Mix_LoadMUS(\"music.mp3\"): %s\n", Mix_GetError());
// this might be a critical error...

}
 	
See Also:
Section 5.2 [Mix Music], page 88, Section 4.5.14 [Mix SetMusicCMD], page 68,
Section 4.5.5 [Mix PlayMusic], page 59, Section 4.5.6 [Mix FadeInMusic], page 60,
Section 4.5.7 [Mix FadeInMusicPos], page 61

Chapter 4: Functions 58

4.5.4 Mix FreeMusic

void Mix FreeMusic(Mix_Music *music)

music Pointer to Mix Music to free.

Free the loaded music. If music is playing it will be halted. If music is fading out, then this
function will wait (blocking) until the fade out is complete.� �
// free music
Mix_Music *music;
Mix_FreeMusic(music);
music=NULL; // so we know we freed it...
 	
See Also:
Section 4.5.3 [Mix LoadMUS], page 57

Chapter 4: Functions 59

4.5.5 Mix PlayMusic

int Mix PlayMusic(Mix_Music *music, int loops)

music Pointer to Mix Music to play.

loops number of times to play through the music.
0 plays the music zero times...
-1 plays the music forever (or as close as it can get to that)

Play the loaded music loop times through from start to finish. The previous music will be
halted, or if fading out it waits (blocking) for that to finish.
Returns: 0 on success, or -1 on errors.� �
// play music forever
// Mix_Music *music; // I assume this has been loaded already
if(Mix_PlayMusic(music, -1)==-1) {

printf("Mix_PlayMusic: %s\n", Mix_GetError());
// well, there’s no music, but most games don’t break without music...

}
 	
See Also:
Section 4.5.6 [Mix FadeInMusic], page 60

Chapter 4: Functions 60

4.5.6 Mix FadeInMusic

int Mix FadeInMusic(Mix_Music *music, int loops, int ms)

music Pointer to Mix Music to play.

loops number of times to play through the music.
0 plays the music zero times...
-1 plays the music forever (or as close as it can get to that)

ms Milliseconds for the fade-in effect to complete.

Fade in over ms milliseconds of time, the loaded music, playing it loop times through from
start to finish.
The fade in effect only applies to the first loop.
Any previous music will be halted, or if it is fading out it will wait (blocking) for the fade
to complete.
This function is the same as Mix_FadeInMusicPos(music, loops, ms, 0).
Returns: 0 on success, or -1 on errors.� �
// play music forever, fading in over 2 seconds
// Mix_Music *music; // I assume this has been loaded already
if(Mix_FadeInMusic(music, -1, 2000)==-1) {

printf("Mix_FadeInMusic: %s\n", Mix_GetError());
// well, there’s no music, but most games don’t break without music...

}
 	
See Also:
Section 4.5.5 [Mix PlayMusic], page 59, Section 4.5.7 [Mix FadeInMusicPos], page 61

Chapter 4: Functions 61

4.5.7 Mix FadeInMusicPos

int Mix FadeInMusicPos(Mix_Music *music, int loops, int ms, double position)

music Pointer to Mix Music to play.

loops number of times to play through the music.
0 plays the music zero times...
-1 plays the music forever (or as close as it can get to that)

ms Milliseconds for the fade-in effect to complete.

position Posistion to play from, see Mix_SetMusicPosition for meaning.

Fade in over ms milliseconds of time, the loaded music, playing it loop times through from
start to finish.
The fade in effect only applies to the first loop.
The first time the music is played, it posistion will be set to posistion, which means different
things for different types of music files, see Mix_SetMusicPosition for more info on that.
Any previous music will be halted, or if it is fading out it will wait (blocking) for the fade
to complete.

Returns: 0 on success, or -1 on errors.� �
// play music forever, fading in over 2 seconds
// Mix_Music *music; // I assume this has been loaded already
if(Mix_FadeInMusicPos(music, -1, 2000)==-1) {

printf("Mix_FadeInMusic: %s\n", Mix_GetError());
// well, there’s no music, but most games don’t break without music...

}
 	
See Also:
Section 4.5.5 [Mix PlayMusic], page 59, Section 4.5.6 [Mix FadeInMusic], page 60, Sec-
tion 4.5.13 [Mix SetMusicPosition], page 67

Chapter 4: Functions 62

4.5.8 Mix HookMusic

void Mix HookMusic(void (*mix_func)(void *udata, Uint8 *stream, int len),
void *arg)

mix func Function pointer to a music player mixer function.
NULL will stop the use of the music player, returning the mixer to using the
internal music players like usual.

arg This is passed to the mix func’s udata parameter when it is called.

This sets up a custom music player function. The function will be called with arg passed
into the udata parameter when the mix func is called. The stream parameter passes in
the audio stream buffer to be filled with len bytes of music. The music player will then
be called automatically when the mixer needs it. Music playing will start as soon as this
is called. All the music playing and stopping functions have no effect on music after this.
Pause and resume will work. Using a custom music player and the internal music player is
not possible, the custom music player takes priority. To stop the custom music player call
Mix_HookMusic(NULL, NULL).
NOTE: NEVER call SDL Mixer functions, nor SDL_LockAudio, from a callback function.� �
// make a music play function
// it expects udata to be a pointer to an int
void myMusicPlayer(void *udata, Uint8 *stream, int len)
{

int i, pos=*(int*)udata;

// fill buffer with...uh...music...
for(i=0; i<len; i++)

stream[i]=(i+pos)&ff;

// set udata for next time
pos+=len;
(int)udata=pos;

}
...
// use myMusicPlayer for playing...uh...music
int music_pos=0;
Mix_HookMusic(myMusicPlayer, &music_pos);
 	
See Also:
Section 4.5.14 [Mix SetMusicCMD], page 68, Section 4.5.22 [Mix GetMusicHookData],
page 76

Chapter 4: Functions 63

4.5.9 Mix VolumeMusic

int Mix VolumeMusic(int volume)

volume Music volume, from 0 to MIX MAX VOLUME(128).
Values greater than MIX MAX VOLUME will use MIX MAX VOLUME.
-1 does not set the volume, but does return the current volume setting.

Set the volume to volume, if it is 0 or greater, and return the previous volume setting.
Setting the volume during a fade will not work, the faders use this function to perform their
effect! Setting volume while using an external music player set by Mix_SetMusicCMD will
have no effect, and Mix_GetError will show the reason why not.
Returns: The previous volume setting.� �
// set the music volume to 1/2 maximum, and then check it
printf("volume was : %d\n", Mix_VolumeMusic(MIX_MAX_VOLUME/2));
printf("volume is now : %d\n", Mix_VolumeMusic(-1));
 	
See Also:
Section 4.5.6 [Mix FadeInMusic], page 60, Section 4.5.16 [Mix FadeOutMusic], page 70,
Section 4.5.14 [Mix SetMusicCMD], page 68

Chapter 4: Functions 64

4.5.10 Mix PauseMusic

void Mix PauseMusic()

Pause the music playback. You may halt paused music.
Note: Music can only be paused if it is actively playing.� �
// pause music playback
Mix_PauseMusic();
 	
See Also:
Section 4.5.11 [Mix ResumeMusic], page 65, Section 4.5.20 [Mix PausedMusic], page 74,
Section 4.5.15 [Mix HaltMusic], page 69

Chapter 4: Functions 65

4.5.11 Mix ResumeMusic

void Mix ResumeMusic()

Unpause the music. This is safe to use on halted, paused, and already playing music.� �
// resume music playback
Mix_ResumeMusic();
 	
See Also:
Section 4.5.10 [Mix PauseMusic], page 64, Section 4.5.20 [Mix PausedMusic], page 74

Chapter 4: Functions 66

4.5.12 Mix RewindMusic

void Mix RewindMusic()

Rewind the music to the start. This is safe to use on halted, paused, and already playing
music. It is not useful to rewind the music immediately after starting playback, because it
starts at the beginning by default.
This function only works for these streams: MOD, OGG, MP3, Native MIDI.� �
// rewind music playback to the start
Mix_RewindMusic();
 	
See Also:
Section 4.5.5 [Mix PlayMusic], page 59

Chapter 4: Functions 67

4.5.13 Mix SetMusicPosition

int Mix SetMusicPosition(double position)

position Posistion to play from.

Set the position of the currently playing music. The position takes different meanings for
different music sources. It only works on the music sources listed below.

MOD The double is cast to Uint16 and used for a pattern number in the module.
Passing zero is similar to rewinding the song.

OGG Jumps to position seconds from the beginning of the song.

MP3 Jumps to position seconds from the current position in the stream.
So you may want to call Mix_RewindMusic before this.
Does not go in reverse...negative values do nothing.

Returns: 0 on success, or -1 if the codec doesn’t support this function.� �
// skip one minute into the song, from the start
// this assumes you are playing an MP3
Mix_RewindMusic();
if(Mix_SetMusicPosition(60.0)==-1) {

printf("Mix_SetMusicPosition: %s\n", Mix_GetError());
}
 	
See Also:
Section 4.5.7 [Mix FadeInMusicPos], page 61

Chapter 4: Functions 68

4.5.14 Mix SetMusicCMD

int Mix SetMusicCMD(const char *command)

command System command to play the music. Should be a complete command, as if
typed in to the command line, but it should expect the filename to be added
as the last argument.
NULL will turn off using an external command for music, returning to the
internal music playing functionality.

Setup a command line music player to use to play music. Any music playing will be halted.
The music file to play is set by calling Mix_LoadMUS(filename), and the filename is ap-
pended as the last argument on the commandline. This allows you to reuse the music
command to play multiple files. The command will be sent signals SIGTERM to halt,
SIGSTOP to pause, and SIGCONT to resume. The command program should react cor-
rectly to those signals for it to function properly with SDL Mixer. Mix_VolumeMusic has
no effect when using an external music player, and Mix_GetError will have an error code
set. You should set the music volume in the music player’s command if the music player
supports that. Looping music works, by calling the command again when the previous
music player process has ended. Playing music through a command uses a forked process
to execute the music command.
To use the internal music players set the command to NULL.
NOTE: External music is not mixed by SDL mixer, so no post-processing hooks will be for
music.
NOTE: Playing music through an external command may not work if the sound driver does
not support multiple openings of the audio device, since SDL Mixer already has the audio
device open for playing samples through channels.
NOTE: Commands are not totally portable, so be careful.
Returns: 0 on success, or -1 on any errors, such as running out of memory.� �
// use mpg123 to play music
Mix_Music *music=NULL;
if(Mix_SetMusicCMD("mpg123 -q")==-1) {

perror("Mix_SetMusicCMD");
} else {

// play some mp3 file
music=Mix_LoadMUS("music.mp3");
if(music) {

Mix_PlayMusic(music,1);
}

}
 	
See Also:
Section 4.5.5 [Mix PlayMusic], page 59, Section 4.5.9 [Mix VolumeMusic], page 63

Chapter 4: Functions 69

4.5.15 Mix HaltMusic

int Mix HaltMusic()

Halt playback of music. This interrupts music fader effects. Any callback set by Mix_
HookMusicFinished will be called when the music stops.
Returns: always returns zero. (even more silly than Mix HaltGroup)� �
// halt music playback
Mix_HaltMusic();
 	
See Also:
Section 4.5.16 [Mix FadeOutMusic], page 70, Section 4.5.17 [Mix HookMusicFinished],
page 71

Chapter 4: Functions 70

4.5.16 Mix FadeOutMusic

int Mix FadeOutMusic(int ms)

ms Milliseconds of time that the fade-out effect should take to go to silence, starting
now.

Gradually fade out the music over ms milliseconds starting from now. The music will be
halted after the fade out is completed. Only when music is playing and not fading already
are set to fade out, including paused channels. Any callback set by Mix_HookMusicFinished
will be called when the music finishes fading out.
Returns: 1 on success, 0 on failure.� �
// fade out music to finish 3 seconds from now
while(!Mix_FadeOutMusic(3000) && Mix_PlayingMusic()) {

// wait for any fades to complete
SDL_Delay(100);

}
 	
See Also:
Section 4.5.15 [Mix HaltMusic], page 69, Section 4.5.21 [Mix FadingMusic], page 75, Sec-
tion 4.5.19 [Mix PlayingMusic], page 73, Section 4.5.17 [Mix HookMusicFinished], page 71

Chapter 4: Functions 71

4.5.17 Mix HookMusicFinished

void Mix HookMusicFinished(void (*music_finished)())

music finished
Function pointer to a void function().
NULL will remove the hook.

This sets up a function to be called when music playback is halted. Any time music stops,
the music finished function will be called. Call with NULL to remove the callback.
NOTE: NEVER call SDL Mixer functions, nor SDL_LockAudio, from a callback function.� �
// make a music finished function
void musicFinished()
{

printf("Music stopped.\n");
}
...
// use musicFinished for when music stops
Mix_HookMusicFinished(musicFinished);
 	
See Also:
Section 4.5.15 [Mix HaltMusic], page 69, Section 4.5.16 [Mix FadeOutMusic], page 70

Chapter 4: Functions 72

4.5.18 Mix GetMusicType

Mix_MusicType Mix GetMusicType(const Mix_Music *music)

music The music to get the type of.
NULL will get the currently playing music type.

Tells you the file format encoding of the music. This may be handy when used with Mix_
SetMusicPosition, and other music functions that vary based on the type of music being
played. If you want to know the type of music currently being played, pass in NULL to
music.
Returns: The type of music or if music is NULL then the currently playing music type,
otherwise MUS NONE if no music is playing.� �
// print the type of music currently playing
switch(Mix_GetMusicType(NULL))
{

case MUS_NONE:
MUS_CMD:

printf("Command based music is playing.\n");
break;

MUS_WAV:
printf("WAVE/RIFF music is playing.\n");
break;

MUS_MOD:
printf("MOD music is playing.\n");
break;

MUS_MID:
printf("MIDI music is playing.\n");
break;

MUS_OGG:
printf("OGG music is playing.\n");
break;

MUS_MP3:
printf("MP3 music is playing.\n");
break;

default:
printf("Unknown music is playing.\n");
break;

}
 	
See Also:
Section 5.3 [Mix MusicType], page 89, Section 4.6.7 [Mix SetPosition], page 84

Chapter 4: Functions 73

4.5.19 Mix PlayingMusic

int Mix PlayingMusic()

Tells you if music is actively playing, or not.
Note: Does not check if the channel has been paused.
Returns: Zero if the music is not playing, or 1 if it is playing.� �
// check if music is playing
printf("music is%s playing.\n", Mix_PlayingMusic()?"":" not");
 	
See Also:
Section 4.5.20 [Mix PausedMusic], page 74, Section 4.5.21 [Mix FadingMusic], page 75,
Section 4.5.5 [Mix PlayMusic], page 59

Chapter 4: Functions 74

4.5.20 Mix PausedMusic

int Mix PausedMusic()

Tells you if music is paused, or not.
Note: Does not check if the music was been halted after it was paused, which may seem a
little weird.
Returns: Zero if music is not paused. 1 if it is paused.� �
// check the music pause status
printf("music is%s paused\n", Mix_PausedMusic()?"":" not");
 	
See Also:
Section 4.5.19 [Mix PlayingMusic], page 73, Section 4.5.10 [Mix PauseMusic], page 64,
Section 4.5.11 [Mix ResumeMusic], page 65

Chapter 4: Functions 75

4.5.21 Mix FadingMusic

Mix_Fading Mix FadingMusic()

Tells you if music is fading in, out, or not at all. Does not tell you if the channel is playing
anything, or paused, so you’d need to test that separately.
Returns: the fading status. Never returns an error.� �
// check the music fade status
switch(Mix_FadingMusic()) {

case MIX_NO_FADING:
printf("Not fading music.\n");
break;

case MIX_FADING_OUT:
printf("Fading out music.\n");
break;

case MIX_FADING_IN:
printf("Fading in music.\n");
break;

}
 	
See Also:
Section 5.4 [Mix Fading], page 90, Section 4.5.20 [Mix PausedMusic], page 74,
Section 4.5.19 [Mix PlayingMusic], page 73, Section 4.5.7 [Mix FadeInMusicPos], page 61,
Section 4.5.16 [Mix FadeOutMusic], page 70

Chapter 4: Functions 76

4.5.22 Mix GetMusicHookData

void *Mix GetMusicHookData()

Get the arg passed into Mix_HookMusic.
Returns: the arg pointer.� �
// retrieve the music hook data pointer
void *data;
data=Mix_GetMusicHookData();
 	
See Also:
Section 4.5.8 [Mix HookMusic], page 62

Chapter 4: Functions 77

4.6 Effects

These functions are for special effects processing. Not all effects are all that special. All
effects are post processing routines that are either built-in to SDL mixer or created by you.
Effects can be applied to individual channels, or to the final mixed stream which contains
all the channels including music.

The built-in processors: Mix_SetPanning, Mix_SetPosition, Mix_SetDistance, and
Mix_SetReverseStereo, all look for an environment variable, MIX EFFECTSMAXSPEED
to be defined. If the environment variable is defined these processors may use more memory
or reduce the quality of the effects, all for better speed.

Chapter 4: Functions 78

4.6.1 Mix RegisterEffect

int Mix RegisterEffect(int chan, Mix_EffectFunc_t f, Mix_EffectDone_t d,
void *arg)

chan channel number to register f and d on.
Use MIX CHANNEL POST to process the postmix stream.

f The function pointer for the effects processor.

d The function pointer for any cleanup routine to be called when the channel is
done playing a sample.
This may be NULL for any processors that don’t need to clean up any memory
or other dynamic data.

arg A pointer to data to pass into the f ’s and d’s udata parameter. It is a good
place to keep the state data for the processor, especially if the processor is made
to handle multiple channels at the same time.
This may be NULL, depending on the processor.

Hook a processor function f into a channel for post processing effects. You may just be
reading the data and displaying it, or you may be altering the stream to add an echo. Most
processors also have state data that they allocate as they are in use, this would be stored
in the arg pointer data space. When a processor is finished being used, any function passed
into d will be called, which is when your processor should clean up the data in the arg data
space.
The effects are put into a linked list, and always appended to the end, meaning they always
work on previously registered effects output. Effects may be added multiple times in a row.
Effects are cumulative this way.
Returns: Zero on errors, such as a nonexisting channel.� �
// make a passthru processor function that does nothing...
void noEffect(int chan, void *stream, int len, void *udata)
{

// you could work with stream here...
}
...
// register noEffect as a postmix processor
if(!Mix_RegisterEffect(MIX_CHANNEL_POST, noEffect, NULL, NULL)) {

printf("Mix_RegisterEffect: %s\n", Mix_GetError());
}
 	
See Also:
Section 4.6.2 [Mix UnregisterEffect], page 79, Section 4.6.3 [Mix UnregisterAllEffects],
page 80

Chapter 4: Functions 79

4.6.2 Mix UnregisterEffect

int Mix UnregisterEffect(int channel, Mix_EffectFunc_t f)

channel Channel number to remove f from as a post processor.
Use MIX CHANNEL POST for the postmix stream.

f The function to remove from channel.

Remove the oldest (first found) registered effect function f from the effect list for channel.
This only removes the first found occurance of that function, so it may need to be called
multiple times if you added the same function multiple times, just stop removing when
Mix_UnregisterEffect returns an error, to remove all occurances of f from a channel.
If the channel is active the registered effect will have its Mix_EffectDone_t function called,
if it was specified in Mix_RegisterEffect.
Returns: Zero on errors, such as invalid channel, or effect function not registered on channel.� �
// unregister the noEffect from the postmix effects
// this removes all occurances of noEffect registered to the postmix
while(Mix_UnregisterEffect(MIX_CHANNEL_POST, noEffect));
// you may print Mix_GetError() if you want to check it.
// it should say "No such effect registered" after this loop.
 	
See Also:
Section 4.6.3 [Mix UnregisterAllEffects], page 80, Section 4.6.1 [Mix RegisterEffect],
page 78

Chapter 4: Functions 80

4.6.3 Mix UnregisterAllEffects

int Mix UnregisterAllEffects(int channel)

channel Channel to remove all effects from.
Use MIX CHANNEL POST for the postmix stream.

This removes all effects registered to channel. If the channel is active all the registered
effects will have their Mix_EffectDone_t functions called, if they were specified in Mix_
RegisterEffect.
Returns: Zero on errors, such as channel not existing.� �
// remove all effects from channel 0
if(!Mix_UnregisterAllEffects(0)) {

printf("Mix_UnregisterAllEffects: %s\n", Mix_GetError());
}
 	
See Also:
Section 4.6.2 [Mix UnregisterEffect], page 79, Section 4.6.1 [Mix RegisterEffect], page 78

Chapter 4: Functions 81

4.6.4 Mix SetPostMix

void Mix SetPostMix(void (*mix_func)(void *udata, Uint8 *stream, int len),
void *arg)

mix func The function pointer for the postmix processor.
NULL unregisters the current postmixer.

arg A pointer to data to pass into the mix func’s udata parameter. It is a good
place to keep the state data for the processor, especially if the processor is made
to handle multiple channels at the same time.
This may be NULL, depending on the processor.

Hook a processor function mix func to the postmix stream for post processing effects. You
may just be reading the data and displaying it, or you may be altering the stream to add
an echo. Most processors also have state data that they allocate as they are in use, this
would be stored in the arg pointer data space. This processor is never really finished, until
the audio device is closed, or you pass NULL as the mix func.
There can only be one postmix function used at a time through this method. Use
Mix_RegisterEffect(MIX_CHANNEL_POST, mix_func, NULL, arg) to use multiple
postmix processors.
This postmix processor is run AFTER all the registered postmixers set up by
Mix_RegisterEffect.� �
// make a passthru processor function that does nothing...
void noEffect(void *udata, Uint8 *stream, int len)
{

// you could work with stream here...
}
...
// register noEffect as a postmix processor
Mix_SetPostMix(noEffect, NULL);
 	
See Also:
Section 4.6.1 [Mix RegisterEffect], page 78

Chapter 4: Functions 82

4.6.5 Mix SetPanning

int Mix SetPanning(int channel, Uint8 left, Uint8 right)

channel Channel number to register this effect on.
Use MIX CHANNEL POST to process the postmix stream.

left Volume for the left channel, range is 0(silence) to 255(loud)

right Volume for the left channel, range is 0(silence) to 255(loud)

This effect will only work on stereo audio. Meaning you called Mix_OpenAudio with 2
channels (MIX DEFAULT CHANNELS). The easiest way to do true panning is to call
Mix_SetPanning(channel, left, 254 - left); so that the total volume is correct, if you
consider the maximum volume to be 127 per channel for center, or 254 max for left, this
works, but about halves the effective volume.
This Function registers the effect for you, so don’t try to Mix_RegisterEffect it yourself.
NOTE: Setting both left and right to 255 will unregister the effect from channel. You cannot
unregister it any other way, unless you use Mix_UnregisterAllEffects on the channel.
NOTE: Using this function on a mono audio device will not register the effect, nor will it
return an error status.
Returns: Zero on errors, such as bad channel, or if Mix_RegisterEffect failed.� �
// pan channel 1 halfway to the left
if(!Mix_SetPanning(1, 255, 127)) {

printf("Mix_SetPanning: %s\n", Mix_GetError());
// no panning, is it ok?

}
 	
See Also:
Section 4.6.7 [Mix SetPosition], page 84, Section 4.6.3 [Mix UnregisterAllEffects], page 80

Chapter 4: Functions 83

4.6.6 Mix SetDistance

int Mix SetDistance(int channel, Uint8 distance)

channel Channel number to register this effect on.
Use MIX CHANNEL POST to process the postmix stream.

distance Specify the distance from the listener, from 0(close/loud) to 255(far/quiet).

This effect simulates a simple attenuation of volume due to distance. The volume never
quite reaches silence, even at max distance.
NOTE: Using a distance of 0 will cause the effect to unregister itself from channel. You
cannot unregister it any other way, unless you use Mix_UnregisterAllEffects on the
channel.
Returns: Zero on errors, such as an invalid channel, or if Mix_RegisterEffect failed.� �
// distance channel 1 to be farthest away
if(!Mix_SetDistance(1, 255)) {

printf("Mix_SetDistance: %s\n", Mix_GetError());
// no distance, is it ok?

}
 	
See Also:
Section 4.6.7 [Mix SetPosition], page 84, Section 4.6.3 [Mix UnregisterAllEffects], page 80

Chapter 4: Functions 84

4.6.7 Mix SetPosition

int Mix SetPosition(int channel, Sint16 angle, Uint8 distance)

channel Channel number to register this effect on.
Use MIX CHANNEL POST to process the postmix stream.

angle Direction in relation to forward from 0 to 360 degrees. Larger angles will be
reduced to this range using angles % 360.
0 = directly in front.
90 = directly to the right.
180 = directly behind.
270 = directly to the left.
So you can see it goes clockwise starting at directly in front.
This ends up being similar in effect to Mix_SetPanning.

distance The distance from the listener, from 0(near/loud) to 255(far/quiet).
This is the same as the Mix_SetDistance effect.

This effect emulates a simple 3D audio effect. It’s not all that realistic, but it can help
improve some level of realism. By giving it the angle and distance from the camera’s point
of view, the effect pans and attenuates volumes. If you are looking for better positional
audio, using OpenAL is suggested.
NOTE: Using angle and distance of 0, will cause the effect to unregister itself from channel.
You cannot unregister it any other way, unless you use Mix_UnregisterAllEffects on the
channel.
Returns: Zero on errors, such as an invalid channel, or if Mix_RegisterEffect failed.� �
// set channel 2 to be behind and right, and 100 units away
if(!Mix_SetPosition(2, 135, 100)) {

printf("Mix_SetPosition: %s\n", Mix_GetError());
// no position effect, is it ok?

}
 	
See Also:
Section 4.6.5 [Mix SetPanning], page 82, Section 4.6.6 [Mix SetDistance], page 83, Sec-
tion 4.6.3 [Mix UnregisterAllEffects], page 80

Chapter 4: Functions 85

4.6.8 Mix SetReverseStereo

int Mix SetReverseStereo(int channel, int flip)

channel Channel number to register this effect on.
Use MIX CHANNEL POST to process the postmix stream.

flip Must be non-zero to work, means nothing to the effect processor itself.
set to zero to unregister the effect from channel.

Simple reverse stereo, swaps left and right channel sound.
NOTE: Using a flip of 0, will cause the effect to unregister itself from channel. You cannot
unregister it any other way, unless you use Mix_UnregisterAllEffects on the channel.
Returns: Zero on errors, such as an invalid channel, or if Mix_RegisterEffect failed.� �
// set the total mixer output to be reverse stereo
if(!Mix_SetReverseStereo(MIX_CHANNEL_POST, 1)) {

printf("Mix_SetReverseStereo: %s\n", Mix_GetError());
// no reverse stereo, is it ok?

}
 	
See Also:
Section 4.6.3 [Mix UnregisterAllEffects], page 80

Chapter 5: Types 86

5 Types

These types are defined and used by the SDL mixer API.

Chapter 5: Types 87

5.1 Mix Chunk� �
typedef struct Mix_Chunk {

int allocated;
Uint8 *abuf;
Uint32 alen;
Uint8 volume; /* Per-sample volume, 0-128 */

} Mix_Chunk;
 	
allocated a boolean indicating whether to free abuf when the chunk is freed.

0 if the memory was not allocated and thus not owned by this chunk.
1 if the memory was allocated and is thus owned by this chunk.

abuf Pointer to the sample data, which is in the output format and sample rate.

alen Length of abuf in bytes.

volume 0 = silent, 128 = max volume. This takes effect when mixing.

The internal format for an audio chunk. This stores the sample data, the length in bytes
of that data, and the volume to use when mixing the sample.
See Also:
Section 4.2.7 [Mix VolumeChunk], page 25, Section 4.3.16 [Mix GetChunk], page 43, Sec-
tion 4.2.3 [Mix LoadWAV], page 21, Section 4.2.4 [Mix LoadWAV RW], page 22, Sec-
tion 4.2.8 [Mix FreeChunk], page 26, Section 5.2 [Mix Music], page 88

Chapter 5: Types 88

5.2 Mix Music� �
typedef struct _Mix_Music Mix_Music;
 	

This is an opaque data type used for Music data. This should always be used as a
pointer. Who knows why it isn’t a pointer in this typedef...
See Also:
Section 4.5.3 [Mix LoadMUS], page 57, Section 4.5.4 [Mix FreeMusic], page 58, Section 5.1
[Mix Chunk], page 87

Chapter 5: Types 89

5.3 Mix MusicType� �
typedef enum {

MUS_NONE,
MUS_CMD,
MUS_WAV,
MUS_MOD,
MUS_MID,
MUS_OGG,
MUS_MP3, /* using SMPEG */
MUS_MP3_MAD,

MUS_FLAC
} Mix_MusicType;
 	

Return values from Mix_GetMusicType are of these enumerated values.
If no music is playing then MUS NONE is returned.
If music is playing via an external command then MUS CMD is returned.
Otherwise they are self explanatory.
See Also:
Section 4.5.18 [Mix GetMusicType], page 72

Chapter 5: Types 90

5.4 Mix Fading� �
typedef enum {

MIX_NO_FADING,
MIX_FADING_OUT,
MIX_FADING_IN

} Mix_Fading;
 	
Return values from Mix_FadingMusic and Mix_FadingChannel are of these enumerated

values. If no fading is taking place on the queried channel or music, then MIX NO FADING
is returned. Otherwise they are self explanatory.
See Also:
Section 4.3.15 [Mix FadingChannel], page 42, Section 4.5.21 [Mix FadingMusic], page 75

Chapter 5: Types 91

5.5 Mix EffectFunc t� �
typedef void (*Mix_EffectFunc_t)(int chan, void *stream, int len,

void *udata);
 	
chan The channel number that this effect is effecting now.

MIX CHANNEL POST is passed in for post processing effects over the final
mix.

stream The buffer containing the current sample to process.

len The length of stream in bytes.

udata User data pointer that was passed in to Mix_RegisterEffect when registering
this effect processor function.

This is the prototype for effect processing functions. These functions are used to apply
effects processing on a sample chunk. As a channel plays a sample, the registered effect
functions are called. Each effect would then read and perhaps alter the len bytes of stream.
It may also be advantageous to keep the effect state in the udata, with would be setup when
registering the effect function on a channel.
See Also:
Section 4.6.1 [Mix RegisterEffect], page 78 Section 4.6.2 [Mix UnregisterEffect], page 79

Chapter 5: Types 92

5.6 Mix EffectDone t� �
typedef void (*Mix_EffectDone_t)(int chan, void *udata);
 	
chan The channel number that this effect is effecting now.

MIX CHANNEL POST is passed in for post processing effects over the final
mix.

udata User data pointer that was passed in to Mix_RegisterEffect when registering
this effect processor function.

This is the prototype for effect processing functions. This is called when a channel has
finished playing, or halted, or is deallocated. This is also called when a processor is unreg-
istered while processing is active. At that time the effects processing function may want to
reset some internal variables or free some memory. It should free memory at least, because
the processor could be freed after this call.
See Also:
Section 4.6.1 [Mix RegisterEffect], page 78 Section 4.6.2 [Mix UnregisterEffect], page 79

Chapter 6: Defines 93

6 Defines

SDL MIXER MAJOR VERSION
1
SDL mixer library major number at compilation time

SDL MIXER MINOR VERSION
2
SDL mixer library minor number at compilation time

SDL MIXER PATCHLEVEL
9
SDL mixer library patch level at compilation time

MIX CHANNELS
8
The default mixer has this many simultaneous mixing channels after the first
call to Mix_OpenAudio.

MIX DEFAULT FREQUENCY
22050
Good default sample rate in Hz (samples per second) for PC sound cards.

MIX DEFAULT FORMAT
AUDIO_S16SYS
The suggested default is signed 16bit samples in host byte order.

MIX DEFAULT CHANNELS
2
Stereo sound is a good default.

MIX MAX VOLUME
128
Maximum value for any volume setting.
This is currently the same as SDL MIX MAXVOLUME.

MIX CHANNEL POST
-2
This is the channel number used for post processing effects.

MIX EFFECTSMAXSPEED
"MIX_EFFECTSMAXSPEED"
A convience definition for the string name of the environment variable to define
when you desire the internal effects to sacrifice quality and/or RAM for speed.
The environment variable must be set (else nonexisting) before Mix_OpenAudio
is called for the setting to take effect.

Chapter 7: Glossary 94

7 Glossary

� �
Byte Order
Also known as Big-Endian. Which means the most significant byte comes first in storage.
Sparc and Motorola 68k based chips are MSB ordered.
(SDL defines this as SDL BYTEORDER==SDL BIG ENDIAN)

Little-Endian(LSB) is stored in the opposite order, with the least significant byte first in
memory. Intel and AMD are two LSB machines.
(SDL defines this as SDL BYTEORDER==SDL LIL ENDIAN)
 	

Index 95

Index

(Index is nonexistent)

	Overview
	Getting Started
	Includes
	Compiling

	Conflicts
	Functions
	General
	Mix_Linked_Version
	Mix_Init
	Mix_Quit
	Mix_OpenAudio
	Mix_CloseAudio
	Mix_SetError
	Mix_GetError
	Mix_QuerySpec

	Samples
	Mix_GetNumChunkDecoders
	Mix_GetChunkDecoder
	Mix_LoadWAV
	Mix_LoadWAV_RW
	Mix_QuickLoad_WAV
	Mix_QuickLoad_RAW
	Mix_VolumeChunk
	Mix_FreeChunk

	Channels
	Mix_AllocateChannels
	Mix_Volume
	Mix_PlayChannel
	Mix_PlayChannelTimed
	Mix_FadeInChannel
	Mix_FadeInChannelTimed
	Mix_Pause
	Mix_Resume
	Mix_HaltChannel
	Mix_ExpireChannel
	Mix_FadeOutChannel
	Mix_ChannelFinished
	Mix_Playing
	Mix_Paused
	Mix_FadingChannel
	Mix_GetChunk

	Groups
	Mix_ReserveChannels
	Mix_GroupChannel
	Mix_GroupChannels
	Mix_GroupCount
	Mix_GroupAvailable
	Mix_GroupOldest
	Mix_GroupNewer
	Mix_FadeOutGroup
	Mix_HaltGroup

	Music
	Mix_GetNumMusicDecoders
	Mix_GetMusicDecoder
	Mix_LoadMUS
	Mix_FreeMusic
	Mix_PlayMusic
	Mix_FadeInMusic
	Mix_FadeInMusicPos
	Mix_HookMusic
	Mix_VolumeMusic
	Mix_PauseMusic
	Mix_ResumeMusic
	Mix_RewindMusic
	Mix_SetMusicPosition
	Mix_SetMusicCMD
	Mix_HaltMusic
	Mix_FadeOutMusic
	Mix_HookMusicFinished
	Mix_GetMusicType
	Mix_PlayingMusic
	Mix_PausedMusic
	Mix_FadingMusic
	Mix_GetMusicHookData

	Effects
	Mix_RegisterEffect
	Mix_UnregisterEffect
	Mix_UnregisterAllEffects
	Mix_SetPostMix
	Mix_SetPanning
	Mix_SetDistance
	Mix_SetPosition
	Mix_SetReverseStereo

	Types
	Mix_Chunk
	Mix_Music
	Mix_MusicType
	Mix_Fading
	Mix_EffectFunc_t
	Mix_EffectDone_t

	Defines
	Glossary
	Index

