
SDL net
3 November 2009

Jonathan Atkins

Copyright c© 2009 Jonathan Atkins
Permission is granted to distribute freely, or in a distribution of any kind. All distributions
of this file must be in an unaltered state, except for corrections.
The latest copy of this document can be found at http://www.jonatkins.org/SDL_net

http://www.jonatkins.org/SDL_net

i

Table of Contents

1 Overview . 1

2 Getting Started. 4
2.1 Includes . 5
2.2 Compiling . 6

3 Functions . 7
3.1 General . 8

3.1.1 SDLNet Linked Version . 9
3.1.2 SDLNet Init . 10
3.1.3 SDLNet Quit . 11
3.1.4 SDLNet GetError . 12
3.1.5 SDLNet Write16 . 13
3.1.6 SDLNet Write32 . 14
3.1.7 SDLNet Read16 . 15
3.1.8 SDLNet Read32 . 16

3.2 Name Resolution . 17
3.2.1 SDLNet ResolveHost. 18
3.2.2 SDLNet ResolveIP . 19

3.3 TCP Sockets . 20
3.3.1 SDLNet TCP Open . 21
3.3.2 SDLNet TCP Close . 23
3.3.3 SDLNet TCP Accept . 24
3.3.4 SDLNet TCP GetPeerAddress . 25
3.3.5 SDLNet TCP Send . 26
3.3.6 SDLNet TCP Recv . 27

3.4 UDP Sockets . 28
3.4.1 SDLNet UDP Open . 29
3.4.2 SDLNet UDP Close . 30
3.4.3 SDLNet UDP Bind . 31
3.4.4 SDLNet UDP Unbind . 32
3.4.5 SDLNet UDP GetPeerAddress . 33
3.4.6 SDLNet UDP Send . 34
3.4.7 SDLNet UDP Recv . 36
3.4.8 SDLNet UDP SendV . 37
3.4.9 SDLNet UDP RecvV . 38

3.5 UDP Packets . 39
3.5.1 SDLNet AllocPacket . 40
3.5.2 SDLNet ResizePacket . 41
3.5.3 SDLNet FreePacket . 42
3.5.4 SDLNet AllocPacketV . 43
3.5.5 SDLNet FreePacketV . 44

ii

3.6 Socket Sets . 45
3.6.1 SDLNet AllocSocketSet . 46
3.6.2 SDLNet FreeSocketSet . 47
3.6.3 SDLNet AddSocket . 48
3.6.4 SDLNet DelSocket . 49
3.6.5 SDLNet CheckSockets . 50
3.6.6 SDLNet SocketReady . 51

4 Types . 53
4.1 IPaddress . 54
4.2 TCPsocket . 55
4.3 UDPsocket . 56
4.4 UDPpacket . 57
4.5 SDLNet SocketSet . 58
4.6 SDLNet GenericSocket . 59

5 Defines. 60

6 Glossary . 61

Index . 62

Chapter 1: Overview 1

1 Overview

A Little Bit About Me

I am currently, as I write this document, a programmer for Raytheon. There I do all sorts
of communications, network, GUI, and other general programming tasks in C/C++ on the
Solaris and sometimes Linux Operating Systems. I have been programming network code
at work and in my free time for about 8 years. I find there is always more to learn about
network coding, but the rewards for making something comunicate over what can only be
called the most chaotic channel of information transfer are sometimes to much fun to ignore.
I have coded only a few things in SDL net that I would call complete projects. However
SDL net does make network coding easier and more portable than anything I could code
using just plain BSD sockets. I was happy that I could finally base my code on something
that is portable and small enough to be unintrusive. SDL net does sometimes seem to
oversimplify some things, but in the end I found that if I couldn’t do it in SDL net then
perhaps I’m not doing something that is worthwhile. Of course I have and will continue to
do things that are not so worthwhile perhaps, using SDL net. Like a Web Server library,
and an IRC client library. But I still enjoy making them anyway! So if you are making a
game, or doing a school project, or even making a no-fun application, SDL net is a viable
choice in my opinion for almost any of these tasks. If you are interested in multicast and
non-TCP/IPv4 networking then SDL net is not the right thing for you. Everyone else,
please make more network games that are fun to play, and portable enough that more
people are out there to play with. I, meanwhile, will continue writting documentation and
applications and games that will likely become vapourware before they even see the light
of day, but I’ll be having fun the whole time.
Feel free to contact me: JonathanCAtkins@gmail.com

I am also usually on IRC at irc.freenode.net in the #SDL channel as LIM

mailto:JonathanCAtkins@gmail.com

Chapter 1: Overview 2

This is the README in the SDL net source archive.� �
SDL net 1.2
The latest version of this library is available from:

SDL net Homepage
This is an example portable network library for use with SDL. It is available under the

GNU Library General Public License. The API can be found in the file SDL net.h This
library supports UNIX, Windows, and BeOS. MacOS support is being written.

The demo program is a chat client and server. The chat client requires the sample GUI
library available at:
GUIlib Homepage
The chat client connects to the server via TCP, registering itself. The server sends back
a list of connected clients, and keeps the client updated with the status of other clients.
Every line of text from a client is sent via UDP to every other client.

Note that this isn’t necessarily how you would want to write a chat program, but it
demonstrates how to use the basic features of the network library.

Enjoy!
-Sam Lantinga and Roy Wood
 	

You may want to look at
Beej’s Guide to Network Programming, which explains network programming using BSD
sockets. You can apply the knowledge from there while using SDL net.

http://www.libsdl.org/projects/SDL_net/
http://www.libsdl.org/projects/GUIlib/
http://www.ecst.csuchico.edu/~beej/guide/net/

Chapter 1: Overview 3

And here’s a bit of humor for you to look at as you deal with networking terms.� �
Dr. Suess as a Network Wizard
Gene_Ziegler@Cornell.edu

Here’s an easy game to play.
Here’s an easy thing to say....

If a packet hits a pocket on a socket on a port,
and the bus is interupted as a very last resort,
and the address of the memory makes your floppy disk abort
then the socket packet pocket has an error to report!

If your cursor finds a menu item followed by a dash,
and the double-clicking icon puts your window in the trash,
and your data is corrupted cause the index doesn’t hash,
then your situation’s hopeless, and your system’s gona crash.

You can’t say this? What a shame, sir!
We’ll find you another game, sir.

If the label on the cable on the table at your house
says the network is connected to the button on your mouse,
but your packets want to tunnel on another protocol,
that’s repeatedly rejected by the printer down the hall,
and your screen is all distorted by the side-effects of gauss,
so your icons in the window are as wavy as a souse,
then you may as well reboot and go out with a bang,
cause as sure as I’m a poet, the sucker’s gunna hang!

When the copy of your floppy’s getting sloppy on the disk,
and the microcode instructions cause unecessary risc,
then you have to flash your memory and you’ll want to RAM your ROM.
quickly turn of your computer and be sure to tell your mom!

 	

mailto:Gene_Ziegler@Cornell.edu

Chapter 2: Getting Started 4

2 Getting Started

This assumes you have gotten SDL net and installed it on your system. SDL net has an
INSTALL document in the source distribution to help you get it compiled and installed.
Generally, installation consists of:� �
./configure
make
make install
 	

You may also want to look at some demonstration code which may be downloaded from:
http://www.jonatkins.org/SDL_net/

http://www.jonatkins.org/SDL_net/

Chapter 2: Getting Started 5

2.1 Includes

To use SDL net functions in a C/C++ source code file, you must use the SDL net.h include
file:� �

#include "SDL_net.h"
 	

Chapter 2: Getting Started 6

2.2 Compiling

To link with SDL net you should use sdl-config to get the required SDL compilation options.
After that, compiling with SDL net is quite easy.
Note: Some systems may not have the SDL net library and include file in the same place
as the SDL library and includes are located, in that case you will need to add more -I and
-L paths to these command lines.� �

Simple Example for compiling an object file:
cc -c ‘sdl-config --cflags‘ mysource.c

Simple Example for compiling an object file:
cc -o myprogram mysource.o ‘sdl-config --libs‘ -lSDL_net
 	
Now myprogram is ready to run.

Chapter 3: Functions 7

3 Functions

These are the functions in the SDL net API.

Chapter 3: Functions 8

3.1 General

The basic API startup, cleanup and versioning methods, along with a few network byte
order data helpers.

Chapter 3: Functions 9

3.1.1 SDLNet Linked Version

const SDL_version *SDLNet Linked Version()
void SDL NET VERSION(SDL_version *compile_version)

This works similar to SDL_Linked_Version and SDL VERSION.
Using these you can compare the runtime version to the version that you compiled with.
No prior library initialization is needed to call these functions/macros.� �
SDL_version compile_version;
const SDL_version *link_version=SDLNet_Linked_Version();
SDL_NET_VERSION(&compile_version);
printf("compiled with SDL_net version: %d.%d.%d\n",

compile_version.major,
compile_version.minor,
compile_version.patch);

printf("running with SDL_net version: %d.%d.%d\n",
link_version->major,
link_version->minor,
link_version->patch);
 	

See Also:
Section 3.1.2 [SDLNet Init], page 10

Chapter 3: Functions 10

3.1.2 SDLNet Init

int SDLNet Init()

Initialize the network API.
This must be called before using other functions in this library.
SDL must be initialized before this call.
Returns: 0 on success, -1 on errors� �
if(SDL_Init(0)==-1) {

printf("SDL_Init: %s\n", SDL_GetError());
exit(1);

}
if(SDLNet_Init()==-1) {

printf("SDLNet_Init: %s\n", SDLNet_GetError());
exit(2);

}
 	
See Also:
Section 3.1.3 [SDLNet Quit], page 11

Chapter 3: Functions 11

3.1.3 SDLNet Quit

void SDLNet Quit()

Shutdown and cleanup the network API.
After calling this all sockets are closed, and the SDL net functions should not be used. You
may, of course, use SDLNet Init to use the functionality again.� �
SDLNet_Quit();
// you could SDL_Quit(); here...or not.
 	
See Also:
Section 3.1.2 [SDLNet Init], page 10

Chapter 3: Functions 12

3.1.4 SDLNet GetError

char *SDLNet GetError()

This is the same as SDL GetError, which returns the last error set as a string which you
may use to tell the user what happened when an error status has been returned from an
SDLNet function.
Returns: a char pointer (string) containing a humam readble version or the reason for the
last error that occured.� �
printf("Oh My Goodness, an error : %s", SDLNet_GetError());
 	

Chapter 3: Functions 13

3.1.5 SDLNet Write16

void SDLNet Write16(Uint16 value, void *area)

value The 16bit number to put into the area buffer

area The pointer into a data buffer, at which to put the number

Put the 16bit (a short on 32bit systems) value into the data buffer area in network byte
order. This helps avoid byte order differences between two systems that are talking over
the network. The value can be a signed number, the unsigned parameter type doesn’t affect
the data. The area pointer need not be at the beginning of a buffer, but must have at least
2 bytes of space left, including the byte currently pointed at.� �
// put my number into a data buffer to prepare for sending to a remote host
char data[1024];
Sint16 number=12345;
SDLNet_Write16((Uint16)number,data);
 	
See Also:
Section 3.1.7 [SDLNet Read16], page 15, Section 3.1.6 [SDLNet Write32], page 14

Chapter 3: Functions 14

3.1.6 SDLNet Write32

void SDLNet Write32(Uint32 value, void *area)

value The 32bit number to put into the area buffer

area The pointer into a data buffer, at which to put the number

Put the 32bit (a long on 32bit systems) value into the data buffer area in network byte
order. This helps avoid byte order differences between two systems that are talking over
the network. The value can be a signed number, the unsigned parameter type doesn’t affect
the data. The area pointer need not be at the beginning of a buffer, but must have at least
4 bytes of space left, including the byte currently pointed at.� �
// put my number into a data buffer to prepare for sending to a remote host
char data[1024];
Uint32 number=0xDEADBEEF;
SDLNet_Write32(number,data);
 	
See Also:
Section 3.1.8 [SDLNet Read32], page 16, Section 3.1.5 [SDLNet Write16], page 13

Chapter 3: Functions 15

3.1.7 SDLNet Read16

Uint16 SDLNet Read16(void *area)

area The pointer into a data buffer, at which to get the number from

Get a 16bit (a short on 32bit systems) value from the data buffer area which is in network
byte order. This helps avoid byte order differences between two systems that are talking
over the network. The returned value can be a signed number, the unsigned parameter type
doesn’t affect the data. The area pointer need not be at the beginning of a buffer, but must
have at least 2 bytes of space left, including the byte currently pointed at.� �
// get a number from a data buffer to use on this host
//char *ptr; //this points into a previously received data buffer
Sint16 number;
number=(Sint16) SDLNet_Read16(ptr);
// number is now in your hosts byte order, ready to use.
 	
See Also:
Section 3.1.5 [SDLNet Write16], page 13, Section 3.1.8 [SDLNet Read32], page 16

Chapter 3: Functions 16

3.1.8 SDLNet Read32

Uint32 SDLNet Read32(void *area)

area The pointer into a data buffer, at which to get the number from

Get a 32bit (a long on 32bit systems) value from the data buffer area which is in network
byte order. This helps avoid byte order differences between two systems that are talking
over the network. The returned value can be a signed number, the unsigned parameter type
doesn’t affect the data. The area pointer need not be at the beginning of a buffer, but must
have at least 4 bytes of space left, including the byte currently pointed at.� �
// get a number from a data buffer to use on this host
//char *ptr; //this points into a previously received data buffer
Uint32 number;
number=SDLNet_Read32(ptr);
// number is now in your hosts byte order, ready to use.
 	
See Also:
Section 3.1.6 [SDLNet Write32], page 14, Section 3.1.7 [SDLNet Read16], page 15

Chapter 3: Functions 17

3.2 Name Resolution

These functions are used to resolve hostnames and numerical IPv4 Address to each other.

Chapter 3: Functions 18

3.2.1 SDLNet ResolveHost

int SDLNet ResolveHost(IPaddress *address, const char *host, Uint16 port)

address This points to the IPaddress that will be filled in. It doesn’t need to be set
before calling this, but it must be allocated in memory.

host For connecting to a server, this is the hostname or IP in a string.
For becoming a server, this is NULL. If you do use NULL, all network inter-
faces would be listened to for incoming connections, using the INADDR ANY
address.

port For connecting to a server, this is the the servers listening port number.
For becoming a server, this is the port to listen on.
If you are just doing Domain Name Resolution functions, this can be 0.

Resolve the string host, and fill in the IPaddress pointed to by address with the resolved
IP and the port number passed in through port.
This is the best way to fill in the IPaddress struct for later use. This function does not
actually open any sockets, it is used to prepare the arguments for the socket opening func-
tions.
WARNING: this function will put the host and port into Network Byte Order into the
address fields, so make sure you pass in the data in your hosts byte order. (normally not
an issue)
Returns: 0 on success. -1 on errors, plus address.host will be INADDR NONE. An error
would likely be that the address could not be resolved.
For a server listening on all interfaces, on port 1234:� �
// create a server type IPaddress on port 1234
IPaddress ipaddress;
SDLNet_ResolveHost(&ipaddress, NULL, 1234);
 	
For a client connecting to “host.domain.ext”, at port 1234:� �
// create an IPaddress for host name "host.domain.ext" on port 1234
// this is used by a client
IPaddress ipaddress;
SDLNet_ResolveHost(&ipaddress, "host.domain.ext", 1234);
 	
See Also:
Section 3.2.2 [SDLNet ResolveIP], page 19, Section 4.1 [IPaddress], page 54

Chapter 3: Functions 19

3.2.2 SDLNet ResolveIP

const char *SDLNet ResolveIP(IPaddress *address)

address This points to the IPaddress that will be resolved to a host name. The address-
>port is ignored.

Resolve the IPv4 numeric address in address->host, and return the hostname as a string.
Returns: a valid char pointer (string) on success. the returned hostname will have host and
domain, as in “host.domain.ext”. NULL is returned on errors, such as when it’s not able
to resolve the host name. The returned pointer is not to be freed. Each time you call this
function the previous pointer’s data will change to the new value, so you may have to copy
it into a local buffer to keep it around longer.� �
// resolve the host name of the address in ipaddress
//IPaddress ipaddress;
char *host;
if(!(host=SDLNet_ResolveIP(&ipaddress))) {

printf("SDLNet_ResolveIP: %s\n", SDLNet_GetError());
exit(1);

}
 	
See Also:
Section 3.2.1 [SDLNet ResolveHost], page 18, Section 4.1 [IPaddress], page 54

Chapter 3: Functions 20

3.3 TCP Sockets

These functions are used to work with TCP Sockets. TCP is used with a full connection,
whereas UDP is connectionless. TCP also ensures that all packets reach the destionation
(when possible). TCP also ensures that packets are received in the same order as sent.

Chapter 3: Functions 21

3.3.1 SDLNet TCP Open

TCPsocket SDLNet TCP Open(IPaddress *ip)

ip This points to the IPaddress that contains the resolved IP address and port
number to use.

Connect to the host and port contained in ip using a TCP connection.
If the host is INADDR ANY, then only the port number is used, and a socket is created
that can be used to later accept incoming TCP connections.

Returns: a valid TCPsocket on success, which indicates a successful connection has been
established, or a socket has been created that is valid to accept incoming TCP connections.
NULL is returned on errors, such as when it’s not able to create a socket, or it cannot
connect to host and/or port contained in ip.� �
// connect to localhost at port 9999 using TCP (client)
IPaddress ip;
TCPsocket tcpsock;

if(SDLNet_ResolveHost(&ip,"localhost",9999)==-1) {
printf("SDLNet_ResolveHost: %s\n", SDLNet_GetError());
exit(1);

}

tcpsock=SDLNet_TCP_Open(&ip);
if(!tcpsock) {

printf("SDLNet_TCP_Open: %s\n", SDLNet_GetError());
exit(2);

}
 	� �
// create a listening TCP socket on port 9999 (server)
IPaddress ip;
TCPsocket tcpsock;

if(SDLNet_ResolveHost(&ip,NULL,9999)==-1) {
printf("SDLNet_ResolveHost: %s\n", SDLNet_GetError());
exit(1);

}

tcpsock=SDLNet_TCP_Open(&ip);
if(!tcpsock) {

printf("SDLNet_TCP_Open: %s\n", SDLNet_GetError());
exit(2);

}
 	

Chapter 3: Functions 22

See Also:
Section 3.3.3 [SDLNet TCP Accept], page 24, Section 3.3.2 [SDLNet TCP Close], page 23,
Section 4.1 [IPaddress], page 54, Section 4.2 [TCPsocket], page 55

Chapter 3: Functions 23

3.3.2 SDLNet TCP Close

void SDLNet TCP Close(TCPsocket sock)

sock A valid TCPsocket. This can be a server or client type socket.

This shutsdown, disconnects, and closes the TCPsocket sock.
After this, you can be assured that this socket is not in use anymore. You can reuse the
sock variable after this to open a new connection with SDLNet TCP Open. Do not try to
use any other functions on a closed socket, as it is now invalid.
Returns: nothing, this always succeeds for all we need to know.� �
// close the connection on sock
//TCPsocket sock;

SDLNet_TCP_Close(sock);
 	
See Also:
Section 3.3.1 [SDLNet TCP Open], page 21, Section 4.2 [TCPsocket], page 55

Chapter 3: Functions 24

3.3.3 SDLNet TCP Accept

TCPsocket SDLNet TCP Accept(TCPsocket server)

server This is the server TCPsocket which was previously created by
SDLNet TCP Open.

Accept an incoming connection on the server TCPsocket.
Do not use this function on a connected socket. Server sockets are never connected to a
remote host. What you get back is a new TCPsocket that is connected to the remote host.
This is a non-blocking call, so if no connections are there to be accepted, you will get a
NULL TCPsocket and the program will continue going.
Returns: a valid TCPsocket on success, which indicates a successful connection has been
established. NULL is returned on errors, such as when it’s not able to create a socket,
or it cannot finish connecting to the originating host and port. There also may not be
a connection attempt in progress, so of course you cannot accept nothing, and you get a
NULL in this case as well.� �
// accept a connection coming in on server_tcpsock
TCPsocket new_tcpsock;

new_tcpsock=SDLNet_TCP_Accept(server_tcpsock);
if(!new_tcpsock) {

printf("SDLNet_TCP_Accept: %s\n", SDLNet_GetError());
}
else {

// communicate over new_tcpsock
}
 	
See Also:
Section 3.3.1 [SDLNet TCP Open], page 21, Section 3.3.4 [SDLNet TCP GetPeerAddress],
page 25, Section 3.3.2 [SDLNet TCP Close], page 23, Section 4.2 [TCPsocket], page 55

Chapter 3: Functions 25

3.3.4 SDLNet TCP GetPeerAddress

IPaddress *SDLNet TCP GetPeerAddress(TCPsocket sock)

sock This is a valid TCPsocket.

Get the Peer’s (the other side of the connection, the remote side, not the local side) IP
address and port number.
Returns: an IPaddress. NULL is returned on errors, or when sock is a server socket.� �
// get the remote IP and port
//TCPsocket new_tcpsock;
IPaddress *remote_ip;

remote_ip=SDLNet_TCP_GetPeerAddress(new_tcpsock);
if(!remote_ip) {

printf("SDLNet_TCP_GetPeerAddress: %s\n", SDLNet_GetError());
printf("This may be a server socket.\n");

}
else {

// print the info in IPaddress or something else...
}
 	
See Also:
Section 3.3.1 [SDLNet TCP Open], page 21, Section 3.3.3 [SDLNet TCP Accept], page 24,
Section 4.1 [IPaddress], page 54, Section 4.2 [TCPsocket], page 55

Chapter 3: Functions 26

3.3.5 SDLNet TCP Send

int SDLNet TCP Send(TCPsocket sock, const void *data, int len)

sock This is a valid, connected, TCPsocket.

data This is a pointer to the data to send over sock.

len This is the length (in bytes) if the data.

Send data of length len over the socket sock.
This routine is not used for server sockets.
Returns: the number of bytes sent. If the number returned is less than len, then an error
occured, such as the client disconnecting.� �
// send a hello over sock
//TCPsocket sock;
int len,result;
char *msg="Hello!";

len=strlen(msg)+1; // add one for the terminating NULL
result=SDLNet_TCP_Send(sock,msg,len);
if(result<len) {

printf("SDLNet_TCP_Send: %s\n", SDLNet_GetError());
// It may be good to disconnect sock because it is likely invalid now.

}
 	
See Also:
Section 3.3.6 [SDLNet TCP Recv], page 27, Section 3.3.3 [SDLNet TCP Accept], page 24,
Section 3.3.1 [SDLNet TCP Open], page 21, Section 3.3.4 [SDLNet TCP GetPeerAddress],
page 25, Section 3.3.2 [SDLNet TCP Close], page 23, Section 4.2 [TCPsocket], page 55

Chapter 3: Functions 27

3.3.6 SDLNet TCP Recv

int SDLNet TCP Recv(TCPsocket sock, void *data, int maxlen)

sock This is a valid, connected, TCPsocket.

data This is a pointer to the buffer that receives the data from sock.

maxlen This is the maximum length (in bytes) that will be read into data.

Receive data of exactly length maxlen bytes from the socket sock, into the memory pointed
to by data.
This routine is not used for server sockets.
Unless there is an error, or the connection is closed, the buffer will read maxlen bytes. If
you read more than is sent from the other end, then it will wait until the full requested
length is sent, or until the connection is closed from the other end.
You may have to read 1 byte at a time for some applications, for instance, text applications
where blocks of text are sent, but you want to read line by line. In that case you may
want to find the newline characters yourself to break the lines up, instead of reading some
inordinate amount of text which may contain many lines, or not even a full line of text.

Returns: the number of bytes received. If the number returned is less than or equal to zero,
then an error occured, or the remote host has closed the connection.� �
// receive some text from sock
//TCPsocket sock;
#define MAXLEN 1024
int result;
char msg[MAXLEN];

result=SDLNet_TCP_Recv(sock,msg,MAXLEN);
if(result<=0) {

// An error may have occured, but sometimes you can just ignore it
// It may be good to disconnect sock because it is likely invalid now.

}
printf("Received: \"%s\"\n",msg);
 	
See Also:
Section 3.3.5 [SDLNet TCP Send], page 26, Section 3.3.3 [SDLNet TCP Accept], page 24,
Section 3.3.1 [SDLNet TCP Open], page 21, Section 3.3.4 [SDLNet TCP GetPeerAddress],
page 25, Section 3.3.2 [SDLNet TCP Close], page 23, Section 4.2 [TCPsocket], page 55

Chapter 3: Functions 28

3.4 UDP Sockets

These functions are used to work with UDP Sockets.
UDP is connectionless, but can be used as if it is connected, in the sense that you don’t
have to address every outgoing packet if you don’t want to. This is done by binding a socket
to remote IP address and port pairs.
UDP has no delivery guarantees, each packet has a chance of never getting to the destination.
UDP packets may also be received completely out of order, as compared to the order of
sending them.
All these seeming bad qualities are made up for in speed. UDP is faster than TCP, and so
many games and speed sensitive applications, which may also be sending redundant data
anyways, such as a game state, prefer to use UDP for the speed benefits.

SDL net has a concept of channels, which help you to matchup packets to specific clients
easier. These channel numbers are not transmitted in the UDP packet data, but rather
when a UDP socket receives or sends packets, a channel number may be used instead of an
IPaddress to refer to the source or destination. You might prefer not to use channels at all,
which is fine. SDL net provides them only as an optional convenience.

Chapter 3: Functions 29

3.4.1 SDLNet UDP Open

UDPsocket SDLNet UDP Open(Uint16 port)

port This is the port number (in native byte order) on which to receive UDP packets.
Most servers will want to use a known port number here so that clients can
easily communicate with the server. This can also be zero, which then opens
an anonymous unused port number, to most likely be used to send UDP packets
from.

Open a socket to be used for UDP packet sending and/or receiving.
If a non-zero port is given it will be used, otherwise any open port number will be used
automatically.
Unlike TCP sockets, this socket does not require a remote host IP to connect to, this is
because UDP ports are never actually connected like TCP ports are.
This socket is able to send and receive directly after this simple creation.
Returns: a valid UDPsocket on success. NULL is returned on errors, such as when it’s not
able to create a socket, or it cannot assign the non-zero port as requested.

Note that below I say server, but clients may also open a specific port, though it is
prefered that a client be more flexible, given that the port may be already allocated by
another process, such as a server. In such a case you will not be able to open the socket,
and your program will be stuck, so it is better to just use whatever port you are given by
using a specified port of zero. Then the client will always work. The client can inform the
server what port to talk back to, or the server can just look at the source of the packets it
is receiving to know where to respond to.� �
// create a UDPsocket on port 6666 (server)
UDPsocket udpsock;

udpsock=SDLNet_UDP_Open(6666);
if(!udpsock) {

printf("SDLNet_UDP_Open: %s\n", SDLNet_GetError());
exit(2);

}
 	� �
// create a UDPsocket on any available port (client)
UDPsocket udpsock;

udpsock=SDLNet_UDP_Open(0);
if(!udpsock) {

printf("SDLNet_UDP_Open: %s\n", SDLNet_GetError());
exit(2);

}
 	
See Also:
Section 3.4.2 [SDLNet UDP Close], page 30, Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 30

3.4.2 SDLNet UDP Close

void SDLNet UDP Close(UDPsocket sock)

sock A valid UDPsocket to shutdown, close, and free.

Shutdown, close, and free a UDPsocket.
Don’t use the UDPsocket after calling this, except to open a new one.
Returns: nothing, this always succeeds.� �
// unbind all addresses on the UDPsocket channel 0
//UDPsocket udpsock;

SDLNet_UDP_Close(udpsock);
udpsock=NULL; //this helps us know that this UDPsocket is not valid anymore
 	
See Also:
Section 3.4.1 [SDLNet UDP Open], page 29, Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 31

3.4.3 SDLNet UDP Bind

int SDLNet UDP Bind(UDPsocket sock, int channel, IPaddress *address)

sock the UDPsocket on which to assign the address.

channel The channel to assign address to. This should be less than
SDLNET MAX UDPCHANNELS. If -1 is used, then the first unbound channel
will be used, this should only be used for incomming packet filtering, as it
will find the first channel with less than SDLNET MAX UDPADDRESSES
assigned to it and use that one.

address The resolved IPaddress to assign to the socket’s channel. The host and port
are both used.
It is not helpful to bind 0.0.0.0 to a channel.

Bind an address to a channel on a socket.
Incoming packets are only allowed from bound addresses for the socket channel.
All outgoing packets on that channel, regardless of the packets internal address, will attempt
to send once on each bound address on that channel.
You may assign up to SDLNET MAX UDPADDRESSES to each channel.
Returns: The channel number that was bound. -1 is returned on errors, such as no free
channels, or this channel has SDLNET MAX UDPADDRESSES already assigned to it, or
you have used a channel higher or equal to SDLNET MAX UDPCHANNELS, or lower
than -1.� �
// Bind address to the first free channel
//UDPsocket udpsock;
//IPaddress *address;
int channel;

channel=SDLNet_UDP_Bind(udpsock, -1, address);
if(channel==-1) {

printf("SDLNet_UDP_Bind: %s\n", SDLNet_GetError());
// do something because we failed to bind

}
 	
See Also:
Section 3.4.4 [SDLNet UDP Unbind], page 32, Section 3.4.5 [SDLNet UDP GetPeerAddress],
page 33, Section 3.4.1 [SDLNet UDP Open], page 29, Section 4.1 [IPaddress], page 54,
Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 32

3.4.4 SDLNet UDP Unbind

void SDLNet UDP Unbind(UDPsocket sock, int channel)

sock A valid UDPsocket to unbind addresses from.

channel The channel to unbind the addresses from in the UDPsocket.

This removes all previously assigned (bound) addresses from a socket channel.
After this you may bind new addresses to the socket channel.
Returns: nothing, this always succeeds.� �
// unbind all addresses on the UDPsocket channel 0
//UDPsocket udpsock;

SDLNet_UDP_Unbind(udpsock, 0);
 	
See Also:
Section 3.4.3 [SDLNet UDP Bind], page 31, Section 3.4.2 [SDLNet UDP Close], page 30,
Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 33

3.4.5 SDLNet UDP GetPeerAddress

IPaddress *SDLNet UDP GetPeerAddress(UDPsocket sock, int channel)

sock A valid UDPsocket that probably has an address assigned to the channel.

channel The channel to get the primary address from in the socket. This may also be
-1 to get the port which this socket is bound to on the local computer.

Get the primary address assigned to this channel. Only the first bound address is returned.
When channel is -1, get the port that this socket is bound to on the local computer, this
only means something if you opened the socket with a specific port number.
Do not free the returned IPaddress pointer.
Returns: a pointer to an IPaddress. NULL is returned for unbound channels and on any
errors.� �
// get the primary address bound to UDPsocket channel 0
//UDPsocket udpsock;
IPaddress *address;

address=SDLNet_UDP_GetPeerAddress(udpsock, 0);
if(!address) {

printf("SDLNet_UDP_GetPeerAddress: %s\n", SDLNet_GetError());
// do something because we failed to get the address

}
else {

// perhaps print out address->host and address->port
}
 	
See Also:
Section 3.4.3 [SDLNet UDP Bind], page 31, Section 3.4.4 [SDLNet UDP Unbind], page 32,
Section 4.1 [IPaddress], page 54, Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 34

3.4.6 SDLNet UDP Send

int SDLNet UDP Send(UDPsocket sock, int channel, UDPpacket *packet)

sock A valid UDPsocket.

channel what channel to send packet on.

packet The packet to send.

Send packet using the specified socket sock, use ing the specified channel or else the packet’s
address.
If channel is not -1 then the packet is sent to all the socket channels bound addresses. If
socket sock’s channel is not bound to any destinations, then the packet is not sent at all!
If the channel is -1, then the packet’s address is used as the destination.
Don’t forget to set the length of the packet in the len element of the packet you are
sending! Note: the packet->channel will be set to the channel passed in to this function.
Note: The maximum size of the packet is limited by the MTU (Maximum Transfer Unit)
of the transport medium. It can be as low as 250 bytes for some PPP links, and as high
as 1500 bytes for ethernet. Beyond that limit the packet will fragment, and make delivery
more and more unreliable as lost fragments cause the whole packet to be discarded.

Returns: The number of destinations sent to that worked. 0 is returned on errors.
Note that since a channel can point to multiple destinations, there should be just as many
packets sent, so dont assume it will always return 1 on success. Unfortunately there’s no
way to get the number of destinations bound to a channel, so either you have to remember
the number bound, or just test for the zero return value indicating all channels failed.� �
// send a packet using a UDPsocket, using the packet’s channel as the channel
//UDPsocket udpsock;
//UDPpacket *packet;
int numsent;

numsent=SDLNet_UDP_Send(udpsock, packet->channel, packet);
if(!numsent) {

printf("SDLNet_UDP_Send: %s\n", SDLNet_GetError());
// do something because we failed to send
// this may just be because no addresses are bound to the channel...

}
 	
Here’s a way of sending one packet using it’s internal channel setting.
This is actually what SDLNet UDP Send ends up calling for you.

Chapter 3: Functions 35

� �
// send a packet using a UDPsocket, using the packet’s channel as the channel
//UDPsocket udpsock;
//UDPpacket *packet;
int numsent;

numsent=SDLNet_UDP_SendV(sock, &packet, 1);
if(!numsent) {

printf("SDLNet_UDP_SendV: %s\n", SDLNet_GetError());
// do something because we failed to send
// this may just be because no addresses are bound to the channel...

}
 	
See Also:
Section 3.4.3 [SDLNet UDP Bind], page 31, Section 3.4.8 [SDLNet UDP SendV], page 37,
Section 3.4.7 [SDLNet UDP Recv], page 36, Section 3.4.9 [SDLNet UDP RecvV], page 38,
Section 4.4 [UDPpacket], page 57, Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 36

3.4.7 SDLNet UDP Recv

int SDLNet UDP Recv(UDPsocket sock, UDPpacket *packet)

sock A valid UDPsocket.

packet The packet to receive into.

Receive a packet on the specified sock socket.
The packet you pass in must have enough of a data size allocated for the incoming packet
data to fit into. This means you should have knowledge of your size needs before trying to
receive UDP packets.
The packet will have it’s address set to the remote sender’s address.
The socket’s channels are checked in highest to lowest order, so if an address is bound to
multiple channels, the highest channel with the source address bound will be retreived before
the lower bound channels. So, the packets channel will also be set to the highest numbered
channel that has the remote address and port assigned to it. Otherwise the channel will -1,
which you can filter out easily if you want to ignore unbound source address.
Note that the local and remote channel numbers do not have to, and probably won’t, match,
as they are only local settings, they are not sent in the packet.
This is a non-blocking call, meaning if there’s no data ready to be received the function will
return.
Returns: 1 is returned when a packet is received. 0 is returned when no packets are received.
-1 is returned on errors.� �
// try to receive a waiting udp packet
//UDPsocket udpsock;
UDPpacket packet;
int numrecv;

numrecv=SDLNet_UDP_Recv(udpsock, &packet);
if(numrecv) {

// do something with packet
}
 	
See Also:
Section 3.4.3 [SDLNet UDP Bind], page 31, Section 3.4.6 [SDLNet UDP Send], page 34,
Section 3.4.8 [SDLNet UDP SendV], page 37, Section 3.4.9 [SDLNet UDP RecvV],
page 38, Section 4.4 [UDPpacket], page 57, Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 37

3.4.8 SDLNet UDP SendV

int SDLNet UDP SendV(UDPsocket sock, UDPpacket **packetV, int npackets)

sock A valid UDPsocket.

packetV The vector of packets to send.

npackets number of packets in the packetV vector to send.

Send npackets of packetV using the specified sock socket.
Each packet is sent in the same way as in SDLNet UDP Send (see Section 3.4.6 [SDL-
Net UDP Send], page 34).
Don’t forget to set the length of the packets in the len element of the packets you are
sending!

Returns: The number of destinations sent to that worked, for each packet in the vector, all
summed up. 0 is returned on errors.� �
// send a vector of 10 packets using UDPsocket
//UDPsocket udpsock;
//UDPpacket **packetV;
int numsent;

numsent=SDLNet_UDP_SendV(udpsock, packetV, 10);
if(!numsent) {

printf("SDLNet_UDP_SendV: %s\n", SDLNet_GetError());
// do something because we failed to send
// this may just be because no addresses are bound to the channels...

}
 	
See Also:
Section 3.4.3 [SDLNet UDP Bind], page 31, Section 3.4.6 [SDLNet UDP Send], page 34,
Section 3.4.7 [SDLNet UDP Recv], page 36, Section 3.4.9 [SDLNet UDP RecvV], page 38,
Section 4.4 [UDPpacket], page 57, Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 38

3.4.9 SDLNet UDP RecvV

int SDLNet UDP RecvV(UDPsocket sock, UDPpacket **packetV)

sock A valid UDPsocket.

packet The packet to receive into.

Receive into a packet vector on the specified socket sock.
packetV is a NULL terminated array. Packets will be received until the NULL is reached,
or there are none ready to be received.
This call is otherwise the same as SDLNet UDP Recv (see Section 3.4.7 [SDL-
Net UDP Recv], page 36).
Returns: the number of packets received. 0 is returned when no packets are received. -1 is
returned on errors.� �
// try to receive some waiting udp packets
//UDPsocket udpsock;
//UDPpacket **packetV;
int numrecv, i;

numrecv=SDLNet_UDP_RecvV(udpsock, &packetV);
if(numrecv==-1) {

// handle error, perhaps just print out the SDL_GetError string.
}
for(i=0; i<numrecv; i++) {

// do something with packetV[i]
}
 	
See Also:
Section 3.4.3 [SDLNet UDP Bind], page 31, Section 3.4.6 [SDLNet UDP Send], page 34,
Section 3.4.8 [SDLNet UDP SendV], page 37, Section 3.4.7 [SDLNet UDP Recv], page 36,
Section 4.4 [UDPpacket], page 57, Section 4.3 [UDPsocket], page 56

Chapter 3: Functions 39

3.5 UDP Packets

These functions are used to work with the UDPpacket type. This type is used with UDP
sockets to transmit and receive data.

Chapter 3: Functions 40

3.5.1 SDLNet AllocPacket

UDPpacket *SDLNet AllocPacket(int size)

size Size, in bytes, of the data buffer to be allocated in the new UDPpacket.
Zero is invalid.

Create (via malloc) a new UDPpacket with a data buffer of size bytes.
The new packet should be freed using SDLNet FreePacket when you are done using it.

Returns: a pointer to a new empty UDPpacket. NULL is returned on errors, such as
out-of-memory.� �
// create a new UDPpacket to hold 1024 bytes of data
UDPpacket *packet;

packet=SDLNet_AllocPacket(1024);
if(!packet) {

printf("SDLNet_AllocPacket: %s\n", SDLNet_GetError());
// perhaps do something else since you can’t make this packet

}
else {

// do stuff with this new packet
// SDLNet_FreePacket this packet when finished with it

}
 	
See Also:
Section 3.5.4 [SDLNet AllocPacketV], page 43, Section 3.5.2 [SDLNet ResizePacket],
page 41, Section 3.5.3 [SDLNet FreePacket], page 42, Section 3.4.6 [SDLNet UDP Send],
page 34, Section 3.4.8 [SDLNet UDP SendV], page 37, Section 4.4 [UDPpacket], page 57

Chapter 3: Functions 41

3.5.2 SDLNet ResizePacket

int SDLNet ResizePacket(UDPpacket *packet, int size)

packet A pointer to the UDPpacket to be resized.

size The new desired size, in bytes, of the data buffer to be allocated in the UDP-
packet.
Zero is invalid.

Resize a UDPpackets data buffer to size bytes. The old data buffer will not be retained, so
the new buffer is invalid after this call.
Returns: the new size of the data in the packet. If the number returned is less than what
you asked for, that’s an error.� �
// Resize a UDPpacket to hold 2048 bytes of data
//UDPpacket *packet;
int newsize;

newsize=SDLNet_ResizePacket(packet, 2048);
if(newsize<2048) {

printf("SDLNet_ResizePacket: %s\n", SDLNet_GetError());
// perhaps do something else since you didn’t get the buffer you wanted

}
else {

// do stuff with the resized packet
}
 	
See Also:
Section 3.5.1 [SDLNet AllocPacket], page 40, Section 3.5.4 [SDLNet AllocPacketV],
page 43, Section 3.5.3 [SDLNet FreePacket], page 42, Section 4.4 [UDPpacket], page 57

Chapter 3: Functions 42

3.5.3 SDLNet FreePacket

void SDLNet FreePacket(UDPpacket *packet)

packet A pointer to the UDPpacket to be freed from memory.

Free a UDPpacket from memory. Do not use this UDPpacket after this function is called
on it.
Returns: nothing, this always succeeds.� �
// Free a UDPpacket
//UDPpacket *packet;

SDLNet_FreePacket(packet);
packet=NULL; //just to help you know that it is freed
 	
See Also:
Section 3.5.1 [SDLNet AllocPacket], page 40, Section 3.5.4 [SDLNet AllocPacketV],
page 43, Section 3.5.5 [SDLNet FreePacketV], page 44, Section 3.5.2 [SDL-
Net ResizePacket], page 41, Section 4.4 [UDPpacket], page 57

Chapter 3: Functions 43

3.5.4 SDLNet AllocPacketV

UDPpacket **SDLNet AllocPacketV(int howmany, int size)

howmany The number of UDPpackets to allocate.

size Size, in bytes, of the data buffers to be allocated in the new UDPpackets.
Zero is invalid.

Create (via malloc) a vector of new UDPpackets, each with data buffers of size bytes. The
new packet vector should be freed using SDLNet FreePacketV when you are done using it.
The returned vector is one entry longer than requested, for a terminating NULL.
Returns: a pointer to a new empty UDPpacket vector. NULL is returned on errors, such
as out-of-memory.� �
// create a new UDPpacket vector to hold 1024 bytes of data in 10 packets
UDPpacket **packetV;

packetV=SDLNet_AllocPacketV(10, 1024);
if(!packetV) {

printf("SDLNet_AllocPacketV: %s\n", SDLNet_GetError());
// perhaps do something else since you can’t make this packet

}
else {

// do stuff with this new packet vector
// SDLNet_FreePacketV this packet vector when finished with it

}
 	
See Also:
Section 3.5.1 [SDLNet AllocPacket], page 40, Section 3.5.3 [SDLNet FreePacket], page 42,
Section 3.5.5 [SDLNet FreePacketV], page 44, Section 3.5.2 [SDLNet ResizePacket],
page 41, Section 4.4 [UDPpacket], page 57

Chapter 3: Functions 44

3.5.5 SDLNet FreePacketV

void SDLNet FreePacketV(UDPpacket **packetV)

packetV A pointer to the UDPpacket vector to be freed from memory.

Free a UDPpacket vector from memory. Do not use this UDPpacket vector, or any UDP-
packet in it, after this function is called on it.
Returns: nothing, this always succeeds.� �
// Free a UDPpacket vector
//UDPpacket **packetV;

SDLNet_FreePacketV(packetV);
packetV=NULL; //just to help you know that it is freed
 	
See Also:
Section 3.5.4 [SDLNet AllocPacketV], page 43, Section 3.5.1 [SDLNet AllocPacket],
page 40, Section 3.5.3 [SDLNet FreePacket], page 42, Section 3.5.2 [SDLNet ResizePacket],
page 41, Section 4.4 [UDPpacket], page 57

Chapter 3: Functions 45

3.6 Socket Sets

These functions are used to work with multiple sockets. They allow you to determine when
a socket has data or a connection waiting to be processed. This is analogous to polling, or
the select function.

Chapter 3: Functions 46

3.6.1 SDLNet AllocSocketSet

SDLNet_SocketSet SDLNet AllocSocketSet(int maxsockets)

maxsockets
The maximum number of sockets you will want to watch.

Create a socket set that will be able to watch up to maxsockets number of sockets. The
same socket set can be used for both UDP and TCP sockets.
Returns: A new, empty, SDLNet SocketSet. NULL is returned on errors, such as out-of-
memory.� �
// Create a socket set to handle up to 16 sockets
SDLNet_SocketSet set;

set=SDLNet_AllocSocketSet(16);
if(!set) {

printf("SDLNet_AllocSocketSet: %s\n", SDLNet_GetError());
exit(1); //most of the time this is a major error, but do what you want.

}
 	
See Also:
Section 3.6.2 [SDLNet FreeSocketSet], page 47, Section 3.6.3 [SDLNet AddSocket], page 48,
Section 4.5 [SDLNet SocketSet], page 58, Section 4.3 [UDPsocket], page 56, Section 4.2
[TCPsocket], page 55

Chapter 3: Functions 47

3.6.2 SDLNet FreeSocketSet

void SDLNet FreeSocketSet(SDLNet_SocketSet set)

set The socket set to free from memory

Free the socket set from memory.
Do not reference the set after this call, except to allocate a new one.
Returns: nothing, this call always succeeds.� �
// free a socket set
//SDLNet_SocketSet set;

SDLNet_FreeSocketSet(set);
set=NULL; //this helps us remember that this set is not allocated
 	
See Also:
Section 3.6.1 [SDLNet AllocSocketSet], page 46, Section 3.6.3 [SDLNet AddSocket],
page 48, Section 4.5 [SDLNet SocketSet], page 58, Section 4.3 [UDPsocket], page 56,
Section 4.2 [TCPsocket], page 55

Chapter 3: Functions 48

3.6.3 SDLNet AddSocket

int SDLNet AddSocket(SDLNet_SocketSet set, SDLNet_GenericSocket sock)
int SDLNet TCP AddSocket(SDLNet_SocketSet set, TCPsocket sock)
int SDLNet UDP AddSocket(SDLNet_SocketSet set, UDPsocket sock)

set The socket set to add this socket to

sock the socket to add to the socket set

Add a socket to a socket set that will be watched. TCP and UDP sockets should be added
using the corrosponding macro (as in SDLNet_TCP_AddSocket for a TCP socket). The
generic socket function will be called by the TCP and UDP macros. Both TCP and UDP
sockets may be added to the same socket set. TCP clients and servers may all be in the
same socket set. There is no limitation on the sockets in the socket set, other than they
have been opened.
Returns: the number of sockets used in the set on success. -1 is returned on errors.� �
// add two sockets to a socket set
//SDLNet_SocketSet set;
//UDPsocket udpsock;
//TCPsocket tcpsock;
int numused;

numused=SDLNet_UDP_AddSocket(set,udpsock);
if(numused==-1) {

printf("SDLNet_AddSocket: %s\n", SDLNet_GetError());
// perhaps you need to restart the set and make it bigger...

}
numused=SDLNet_TCP_AddSocket(set,tcpsock);
if(numused==-1) {

printf("SDLNet_AddSocket: %s\n", SDLNet_GetError());
// perhaps you need to restart the set and make it bigger...

}
 	
See Also:
Section 3.6.1 [SDLNet AllocSocketSet], page 46, Section 3.6.4 [SDLNet DelSocket], page 49,
Section 3.6.5 [SDLNet CheckSockets], page 50, Section 4.5 [SDLNet SocketSet], page 58,
Section 4.3 [UDPsocket], page 56, Section 4.2 [TCPsocket], page 55

Chapter 3: Functions 49

3.6.4 SDLNet DelSocket

int SDLNet DelSocket(SDLNet_SocketSet set, SDLNet_GenericSocket sock)
int SDLNet TCP DelSocket(SDLNet_SocketSet set, TCPsocket sock)
int SDLNet UDP DelSocket(SDLNet_SocketSet set, UDPsocket sock)

set The socket set to remove this socket from

sock the socket to remove from the socket set

Remove a socket from a socket set. Use this before closing a socket that you are watching
with a socket set. This doesn’t close the socket. Call the appropriate macro for TCP or
UDP sockets. The generic socket function will be called by the TCP and UDP macros.
Returns: the number of sockets used in the set on success. -1 is returned on errors.� �
// remove two sockets from a socket set
//SDLNet_SocketSet set;
//UDPsocket udpsock;
//TCPsocket tcpsock;
int numused;

numused=SDLNet_UDP_DelSocket(set,udpsock);
if(numused==-1) {

printf("SDLNet_DelSocket: %s\n", SDLNet_GetError());
// perhaps the socket is not in the set

}
numused=SDLNet_TCP_DelSocket(set,tcpsock);
if(numused==-1) {

printf("SDLNet_DelSocket: %s\n", SDLNet_GetError());
// perhaps the socket is not in the set

}
 	
See Also:
Section 3.6.3 [SDLNet AddSocket], page 48, Section 3.6.2 [SDLNet FreeSocketSet], page 47,
Section 4.5 [SDLNet SocketSet], page 58, Section 4.3 [UDPsocket], page 56, Section 4.2
[TCPsocket], page 55

Chapter 3: Functions 50

3.6.5 SDLNet CheckSockets

int SDLNet CheckSockets(SDLNet_SocketSet set, Uint32 timeout)

set The socket set to check

timeout The amount of time (in milliseconds).
0 means no waiting.
-1 means to wait over 49 days! (think about it)

Check all sockets in the socket set for activity. If a non-zero timeout is given then this
function will wait for activity, or else it will wait for timeout milliseconds.

NOTE: "activity" also includes disconnections and other errors, which would be deter-
mined by a failed read/write attempt.
Returns: the number of sockets with activity. -1 is returned on errors, and you may not
get a meaningful error message. -1 is also returned for an empty set (nothing to check).� �
// Wait for up to 1 second for network activity
//SDLNet_SocketSet set;
int numready;

numready=SDLNet_CheckSockets(set, 1000);
if(numready==-1) {

printf("SDLNet_CheckSockets: %s\n", SDLNet_GetError());
//most of the time this is a system error, where perror might help you.
perror("SDLNet_CheckSockets");

}
else if(numready) {

printf("There are %d sockets with activity!\n",numready);
// check all sockets with SDLNet_SocketReady and handle the active ones.

}
 	
See Also:
Section 3.6.6 [SDLNet SocketReady], page 51, Section 3.6.3 [SDLNet AddSocket], page 48,
Section 3.6.4 [SDLNet DelSocket], page 49, Section 3.6.1 [SDLNet AllocSocketSet], page 46,
Section 4.5 [SDLNet SocketSet], page 58, Section 4.3 [UDPsocket], page 56, Section 4.2
[TCPsocket], page 55

Chapter 3: Functions 51

3.6.6 SDLNet SocketReady

int SDLNet SocketReady(sock)

sock The socket to check for activity.
Both UDPsocket and TCPsocket can be used with this function.

Check whether a socket has been marked as active. This function should only be used on a
socket in a socket set, and that set has to have had SDLNet CheckSockets (see Section 3.6.5
[SDLNet CheckSockets], page 50) called upon it.
Returns: non-zero for activity. zero is returned for no activity.� �
// Wait forever for a connection attempt
//SDLNet_SocketSet set;
//TCPsocket serversock, client;
int numready;

numready=SDLNet_CheckSockets(set, 1000);
if(numready==-1) {

printf("SDLNet_CheckSockets: %s\n", SDLNet_GetError());
//most of the time this is a system error, where perror might help you.
perror("SDLNet_CheckSockets");

}
else if(numready) {

printf("There are %d sockets with activity!\n",numready);
// check all sockets with SDLNet_SocketReady and handle the active ones.
if(SDLNet_SocketReady(serversock)) {

client=SDLNet_TCP_Accept(serversock);
if(client) {

// play with the client.
}

}
}
 	

Chapter 3: Functions 52

To just quickly do network handling with no waiting, we do this.� �
// Check for, and handle UDP data
//SDLNet_SocketSet set;
//UDPsocket udpsock;
//UDPpacket *packet;
int numready, numpkts;

numready=SDLNet_CheckSockets(set, 0);
if(numready==-1) {

printf("SDLNet_CheckSockets: %s\n", SDLNet_GetError());
//most of the time this is a system error, where perror might help you.
perror("SDLNet_CheckSockets");

}
else if(numready) {

printf("There are %d sockets with activity!\n",numready);
// check all sockets with SDLNet_SocketReady and handle the active ones.
if(SDLNet_SocketReady(udpsock)) {

numpkts=SDLNet_UDP_Recv(udpsock,&packet);
if(numpkts) {

// process the packet.
}

}
}
 	
See Also:
Section 3.6.5 [SDLNet CheckSockets], page 50, Section 3.6.3 [SDLNet AddSocket], page 48,
Section 3.6.4 [SDLNet DelSocket], page 49, Section 3.6.1 [SDLNet AllocSocketSet], page 46,
Section 4.5 [SDLNet SocketSet], page 58, Section 4.3 [UDPsocket], page 56, Section 4.2
[TCPsocket], page 55

Chapter 4: Types 53

4 Types

These types are defined and used by the SDL net API.

Chapter 4: Types 54

4.1 IPaddress� �
typedef struct {

Uint32 host; /* 32-bit IPv4 host address */
Uint16 port; /* 16-bit protocol port */

} IPaddress;
 	
host the IPv4 address of a host, encoded in Network Byte Order.

port the IPv4 port number of a socket, encoded in Network Byte Order.

This type contains the information used to form network connections and sockets.
See Also:
Section 3.2 [Name Resolution], page 17, Section 3.3.1 [SDLNet TCP Open], page 21, Sec-
tion 4.4 [UDPpacket], page 57

Chapter 4: Types 55

4.2 TCPsocket� �
typedef struct _TCPsocket *TCPsocket;
 	

This is an opaque data type used for TCP connections. This is a pointer, and so it could
be NULL at times. NULL would indicate no socket has been established.
See Also:
Section 3.3 [TCP Sockets], page 20, Section 4.3 [UDPsocket], page 56, Section 4.6 [SDL-
Net GenericSocket], page 59

Chapter 4: Types 56

4.3 UDPsocket� �
typedef struct _UDPsocket *UDPsocket;
 	

This is an opaque data type used for UDP sockets. This is a pointer, and so it could be
NULL at times. NULL would indicate no socket has been established.
See Also:
Section 3.4 [UDP Sockets], page 28, Section 4.4 [UDPpacket], page 57, Section 4.2 [TCP-
socket], page 55, Section 4.6 [SDLNet GenericSocket], page 59

Chapter 4: Types 57

4.4 UDPpacket� �
typedef struct {

int channel; /* The src/dst channel of the packet */
Uint8 *data; /* The packet data */
int len; /* The length of the packet data */
int maxlen; /* The size of the data buffer */
int status; /* packet status after sending */
IPaddress address; /* The source/dest address of an

incoming/outgoing packet */
} UDPpacket;

 	
channel The (software) channel number for this packet. This can also be used as a

priority value for the packet. If no channel is assigned, the value is -1.

data The data contained in this packet, this is the meat.

len This is the meaningful length of the data in bytes.

maxlen This is size of the data buffer, which may be larger than the meaningful length.
This is only used for packet creation on the senders side.

status This contains the number of bytes sent, or a -1 on errors, after sending. This
is useless for a received packet.

address This is the resolved IPaddress to be used when sending, or it is the remote
source of a received packet.

This struct is used with UDPsockets to send and receive data. It also helps keep track
of a packets sending/receiving settings and status. The channels concept helps prioritize,
or segregate differring types of data packets.
See Also:
Section 3.5 [UDP Packets], page 39, Section 4.3 [UDPsocket], page 56, Section 4.1 [IPad-
dress], page 54

Chapter 4: Types 58

4.5 SDLNet SocketSet� �
typedef struct _SDLNet_SocketSet *SDLNet_SocketSet;
 	

This is an opaque data type used for socket sets. This is a pointer, and so it could be
NULL at times. NULL would indicate no socket set has been created.
See Also:
Section 3.6 [Socket Sets], page 45, Section 4.2 [TCPsocket], page 55, Section 4.3 [UDP-
socket], page 56

Chapter 4: Types 59

4.6 SDLNet GenericSocket� �
typedef struct {

int ready;
} *SDLNet_GenericSocket;
 	
ready non-zero when data is ready to be read, or a server socket has a connection

attempt ready to be accepted.

This data type is able to be used for both UDPsocket and TCPsocket types.
After calling SDLNet CheckSockets, if this socket is in SDLNet SocketSet used, the ready
will be set according to activity on the socket. This is the only real use for this type, as it
doesn’t help you know what type of socket it is.
See Also:
Section 3.6 [Socket Sets], page 45, Section 4.2 [TCPsocket], page 55, Section 4.3 [UDP-
socket], page 56

Chapter 5: Defines 60

5 Defines

SDL NET MAJOR VERSION
1
SDL net library major number at compilation time

SDL NET MINOR VERSION
2
SDL net library minor number at compilation time

SDL NET PATCHLEVEL
7
SDL net library patch level at compilation time

INADDR ANY
0x00000000 (0.0.0.0)
used for listening on all network interfaces.

INADDR NONE
0xFFFFFFFF (255.255.255.255)
which has limited applications.

INADDR BROADCAST
0xFFFFFFFF (255.255.255.255)
used as destination when sending a message to all clients on a subnet that allows
broadcasts.

SDLNET MAX UDPCHANNELS
32
The maximum number of channels on a UDP socket.

SDLNET MAX UDPADDRESSES
4
The maximum number of addresses bound to a single UDP socket channel

Chapter 6: Glossary 61

6 Glossary

� �
Network Byte Order
Also known as Big-Endian. Which means the most significant byte comes first in storage.
Sparc and Motorola 68k based chips are MSB ordered.
(SDL defines this as SDL BYTEORDER==SDL BIG ENDIAN)

Little-Endian(LSB) is stored in the opposite order, with the least significant byte first in
memory. Intel and AMD are two LSB machines.
(SDL defines this as SDL BYTEORDER==SDL LIL ENDIAN)

For network addresses, 1.2.3.4 is always stored as {0x01 0x02 0x03 0x04}.
 	

Index 62

Index

(Index is nonexistent)

	Overview
	Getting Started
	Includes
	Compiling

	Functions
	General
	SDLNet_Linked_Version
	SDLNet_Init
	SDLNet_Quit
	SDLNet_GetError
	SDLNet_Write16
	SDLNet_Write32
	SDLNet_Read16
	SDLNet_Read32

	Name Resolution
	SDLNet_ResolveHost
	SDLNet_ResolveIP

	TCP Sockets
	SDLNet_TCP_Open
	SDLNet_TCP_Close
	SDLNet_TCP_Accept
	SDLNet_TCP_GetPeerAddress
	SDLNet_TCP_Send
	SDLNet_TCP_Recv

	UDP Sockets
	SDLNet_UDP_Open
	SDLNet_UDP_Close
	SDLNet_UDP_Bind
	SDLNet_UDP_Unbind
	SDLNet_UDP_GetPeerAddress
	SDLNet_UDP_Send
	SDLNet_UDP_Recv
	SDLNet_UDP_SendV
	SDLNet_UDP_RecvV

	UDP Packets
	SDLNet_AllocPacket
	SDLNet_ResizePacket
	SDLNet_FreePacket
	SDLNet_AllocPacketV
	SDLNet_FreePacketV

	Socket Sets
	SDLNet_AllocSocketSet
	SDLNet_FreeSocketSet
	SDLNet_AddSocket
	SDLNet_DelSocket
	SDLNet_CheckSockets
	SDLNet_SocketReady

	Types
	IPaddress
	TCPsocket
	UDPsocket
	UDPpacket
	SDLNet_SocketSet
	SDLNet_GenericSocket

	Defines
	Glossary
	Index

